## 2.16 Compound Measures and Rates of Change

| • | To use time in calculations (e.g., working out speed) pupils need to convert hours and minutes either to decimal |
|---|------------------------------------------------------------------------------------------------------------------|
|   | hours or to minutes (see the first task below).                                                                  |

- Don't assume all pupils will be confident reading an analogue clock.
- See section 1.25 for further ideas.

| 2.16.1 | Decimal Time.<br>If I went on a journey and said it took me 3.25 hours,<br>why might that be confusing?<br>How long do I really mean?                                                             | Answer: Do I mean 3 hours and 25 minutes or do I<br>mean $3\frac{1}{4}$ hours?<br>3.25 h = 3h15min                                                                                         |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | How long is 3.7 hours literally?                                                                                                                                                                  | <i>Less than 3h45min (3.75 h, <math>3\frac{3}{4}h</math>).</i>                                                                                                                             |
|        | Decimal time $\times$ 60 = time in minutes.                                                                                                                                                       | More than 3h30min (3.5 h, $3\frac{1}{2}h$ ).<br>Could say that 0.1 h = 6 min, so 0.7 h = 42 min, so the time is 3h42min.                                                                   |
| 2.16.2 | <b>NEED</b> local train/bus timetables (companies will<br>sometimes give you as many as you want at no cost,<br>especially if they're nearly out of date).                                        | You may need to explain how the timetables work;<br>i.e., different sides for different directions; "slow"<br>and "fast" trains; different services<br>Saturday/Sunday, etc.               |
|        | e.g., "I want to get to London by 6 pm. Which train should I catch and how long will the journey take?"                                                                                           | Pupils need to apply commonsense bearing in mind that services may be delayed or cancelled.                                                                                                |
| 2.16.3 | What does it mean if an aeroplane travels at "mach 2.5"?                                                                                                                                          | Answer:<br>The "mach" number (named after Ernst Mach,<br>1838-1916) is the number of times the speed of sound<br>that the aeroplane is travelling.<br>Mach >1 means "supersonic".          |
|        | The speed of sound in air is $330 \text{ m/s} = 760 \text{ mph}$ at sea level, but it drops considerably with altitude (e.g., it's only 590 mph at 30 000 ft) because of the decrease in density. | (You have to say the speed of sound in air because<br>sound waves need something to go through – the<br>speed of sound in a vacuum is zero.)                                               |
| 2.16.4 | Do you think there's a limit to how fast any object can go?                                                                                                                                       | Answer:<br>According to Einstein's (1879-1955) relativity<br>theory, no object can go faster than the speed of light                                                                       |
|        | Of course ordinary objects (e.g., an aeroplane)<br>would fall to bits if we tried to make them go too fast,<br>but Einstein's theory is more fundamental than that.                               | in a vacuum (c).<br>$c = 3 \times 10^8$ m/s or 186 000 miles/s.<br>Sometimes other speeds are given relative to c; e.g.,<br>speed of electrons in a particle accelerator could be<br>0.9c. |
| 2.16.5 | When is speed measured in knots?                                                                                                                                                                  | Answer:<br>It's a unit of speed often used for aircraft and boats;<br>1 knot = 1 nautical mile per hour<br>= 1.15 land miles per hour.                                                     |
| 2.16.6 | "Around the World in 80 Days", Jules Verne. What was Phileas Fogg's average speed?                                                                                                                | Answer: $\frac{4 \times 10^4}{80 \times 24} = 21$ kph (approx).                                                                                                                            |
| 2.16.7 | Would you say we're moving at the moment?<br>The earth is rotating. Estimate how fast you think<br>we're moving (mph).<br>What would you need to know to work out our                             | Answer:<br>On the equator, we move $2\pi r$ metres every 24<br>hours, which is $2\pi \times 6.4 \times 10^6 = 4 \times 10^7$ m,<br>corresponding to a speed of about 1700 kph or 1000      |
|        | Calin Fastar 2002                                                                                                                                                                                 | · factor77 co. ult                                                                                                                                                                         |

© Colin Foster, 2003 www.foster77.co.uk

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|         | speed?<br>Radius of earth = $6.4 \times 10^6$ m<br>(Hint: Imagine we're on the equator )                                                                                                                                                                                                                                                                                                                                                          | mph. Off the equator it's slower.<br>The angular speed is very low $(0.25^{\circ} \text{ per min})$ , so we                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|         | Why doesn't it feel like it?                                                                                                                                                                                                                                                                                                                                                                                                                      | don't notice our direction changing. We can't tell the<br>high speed because the atmosphere, etc. moves with                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 2.16.8  | <i>Of course, the earth is also orbiting the sun.</i><br>It takes 8 hours to fly from London to New York, a distance of 3 500 miles. What is the average                                                                                                                                                                                                                                                                                          | Answers:                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|         | aeroplane speed?                                                                                                                                                                                                                                                                                                                                                                                                                                  | 440 mph (sub-sonic)                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|         | Concorde gets there in about $3\frac{1}{2}$ hours. What is Concorde's average speed?                                                                                                                                                                                                                                                                                                                                                              | 1000 mph (supersonic; Concorde cruises at about<br>Mach 2)                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|         | If Concorde could fly non-stop around the world, how long would it take?                                                                                                                                                                                                                                                                                                                                                                          | $\frac{4 \times 10^4 \div 1.6}{1000} = 25 \text{ hours (just over a day).}$                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 2.16.9  | I am standing on the platform at a railway station. An<br>inter-city train speeds through the station and it takes<br>4 seconds to pass me. A few moments later, another<br>train of the same length comes through going the<br>other way. This second train takes 5 seconds to pass<br>me. How long did it take them to pass each other?                                                                                                         | Answer: If x is the (unknown) length of the trains,<br>then the speed of the first train is $\frac{x}{4}$ and the speed of<br>the second is $\frac{x}{5}$ . Their speed relative to each other<br>will therefore be $\frac{x}{4} + \frac{x}{5} = \frac{9x}{20}$ . When they pass each<br>other there is a relative distance of 2x to cover, so<br>the time taken will be $2x \div \frac{9x}{20} = \frac{40}{9} = 4\frac{4}{9}$ seconds.    |  |  |  |  |  |
| 2.16.10 | Alison and Beckie run a 100 m race. Alison wins by<br>exactly 1 m. If they run again, but this time Alison<br>starts 1 m behind the starting line, who will win this<br>time?<br>Assume that they both run at steady speeds and<br>perform just as well on the second race.                                                                                                                                                                       | Answer: Alison again. When Alison runs her first<br>100 m, Beckie will have got to 99 m, so they'll be<br>level. But then in the next 1 m Alison will overtake<br>and win by 1 cm.                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 2.16.11 | If sound travels at 330 m/s, make up an easy to<br>remember rule (or check one you already know) to<br>work out how far away lightning is when you see the<br>flash and hear the thunder.                                                                                                                                                                                                                                                         | Answer: The speed is roughly 1 km every 3 seconds,<br>so one possibility would be "count the seconds from<br>the flash to the thunder – could say 'zero' on the<br>flash – and divide by 3 to find out the distance away<br>in km".                                                                                                                                                                                                        |  |  |  |  |  |
| 2.16.12 | Density. Which weighs more, 1 kg of wood or 1 kg<br>of steel?<br>What is different about 1 kg of wood and 1 kg of<br>steel?                                                                                                                                                                                                                                                                                                                       | Answer: the same, of course!<br>The steel would take up much less space (volume)<br>than the wood would.                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|         | Work out the mass of a cuboid gold bar that is 18 cm                                                                                                                                                                                                                                                                                                                                                                                              | Volume = $18 \times 9 \times 4.5 = 729 \text{ cm}^3$ .<br>So mass = $729 \times 19.32 = 14 \text{ kg}$ (or about 30 lb).                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|         | The density of gold is 19.32 g/cm <sup>3</sup> .<br>Do you think you could lift one?                                                                                                                                                                                                                                                                                                                                                              | <i>Yes. About 14 bags of sugar, or half a sack of potatoes!</i>                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|         | Could work out how much it would be worth. Prices of gold vary minute by minute, but they're in the region of $\pounds7\ 000$ per kg.                                                                                                                                                                                                                                                                                                             | <i>This would give a value of about £100 000.</i>                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 2.16.13 | What would be the value of a silver bar the same<br>size? (The density of silver is<br>10.49 g/cm <sup>3</sup> ; the cost is roughly £100 per kg.))<br>How dense are we?!<br>Average human volume is about 70 litres (see<br>section 2.10.14) and average human mass is around<br>70 kg, so average human density is about 1 kg/litre<br>or 1 g/cm <sup>3</sup> . This is the density of water, and that<br>explains why we float, but only just. | You could work it out as above, or scale down.<br>$cost = 100000 \times \frac{10.49}{19.32} \times \frac{100}{7000} = \pounds 800$ approx.<br>This is "average" human density in two senses. Not<br>all human beings are identical, of course, but also<br>the body is non-uniform. Bones are dense and sink,<br>whereas lungs are relatively light. So this is average<br>density over the whole body as well as the whole<br>population. |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |

## Speed Measured in Different Units

| mph |    |     |    |    |       |      |    |    |    |    |    |      |     |      |       |     |     |    |    |   |
|-----|----|-----|----|----|-------|------|----|----|----|----|----|------|-----|------|-------|-----|-----|----|----|---|
| 0   | 5  | 10  | 15 | 20 | 25    | 30   | 35 | 40 | 45 | 50 | 55 | 60   | 65  | 70   | 75    | 80  | 85  | 90 | 95 |   |
|     | I. |     | -  |    | -     |      | 1  |    |    | 1  |    |      |     |      |       |     |     |    | -  |   |
| kph |    |     |    |    |       |      |    |    |    |    |    |      |     |      |       |     |     |    |    |   |
| 0   | 10 | 20  |    | 30 | 40    | 50   | 60 |    | 70 | 80 | 90 | 100  | 1   | 10   | 120   | 130 | 140 | 15 | 50 |   |
| •   | •  |     |    | •  |       |      | •  |    |    |    | •  |      |     |      | •     |     | •   |    |    |   |
| m/s |    |     |    |    |       |      |    |    |    |    |    |      |     |      |       |     |     |    |    | _ |
| 0   | 2  | 4 6 | 5  | 8  | 10 12 | 2 14 | 16 | 18 | 20 | 22 | 24 | 26 2 | 8 3 | 30 3 | 32 34 | 36  | 38  | 40 | 42 |   |

|        | ÷1.15         |     | ×1.6          |     | $\times \frac{5}{18}$ |     |
|--------|---------------|-----|---------------|-----|-----------------------|-----|
|        | $\rightarrow$ |     | $\rightarrow$ |     | $\rightarrow$         |     |
| lan of |               | la  |               | 11- |                       |     |
| кпоі   |               | mpn |               | крп |                       | m/s |
| KNOU   | ~             | mpn | ←             | крп | ~                     | m/s |

The triangle on the left gives the formulas for speed s, distance d and time t. The one on the right gives the formulas for density d, mass m and volume V.





## **Densities of Common Materials**

| material  | density<br>(g/cm <sup>3</sup> ) | mass<br>of 50 cm <sup>3</sup> | mass<br>of 35 cm <sup>3</sup> | volume<br>of 50 g | volume<br>of 35 g |
|-----------|---------------------------------|-------------------------------|-------------------------------|-------------------|-------------------|
| water     | 1.00                            | 50.0                          | 35.0                          | 50.00             | 35.00             |
| aluminium | 2.70                            | 135.0                         | 94.5                          | 18.52             | 12.96             |
| zinc      | 7.13                            | 356.5                         | 249.6                         | 7.01              | 4.91              |
| iron      | 7.87                            | 393.5                         | 275.5                         | 6.35              | 4.45              |
| copper    | 8.96                            | 448.0                         | 313.6                         | 5.58              | 3.91              |
| silver    | 10.49                           | 524.5                         | 367.2                         | 4.77              | 3.34              |
| lead      | 11.36                           | 568.0                         | 397.6                         | 4.40              | 3.08              |
| mercury   | 13.55                           | 677.5                         | 474.3                         | 3.69              | 2.58              |
| gold      | 19.32                           | 966.0                         | 676.2                         | 2.59              | 1.81              |