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A post-16 mathematics student, Peter (not his real name), asked me, “Does 
Pythagoras’ theorem generalise to three dimensions?”

I said, “Yes.” But it turned out that we had different things in mind.
Peter was familiar with finding the modulus of two-dimensional vectors 

such as (3, 4) by working out + =3 4 52 2 , so when faced with the three-
dimensional vector (3, 4, 5) it seemed to him like a natural extension to 
calculate the magnitude as 3 4 5 63 3 33 + + = . He had generalised from 
a2 + b2 = c2 in two dimensions to a3 + b3 + c3 = d3 in three dimensions, whereas 
what I had in mind was a2 + b2 + c2 = d2.

Pythagoras’ theorem in two and three dimensions appears in General 
Mathematics, Units 1–2, section 6 (Geometry and trigonometry: Shape and 
measurement) in the Victorian Certificate of Education Mathematics Study Design 
(Victorian Curriculum Assessment Authority, 2010). It also comes in Further 
Mathematics, Units 3–4 (Applications: Geometry and trigonometry) in the 
same document. In the UK (and in Australia), students typically meet the two-
dimensional version when aged around 13–14 and become quite familiar with 
this before encountering the three-dimensional version later on. Pythagoras’ 
theorem is likely to be a significant element in any secondary mathematics 
curriculum, and is one of the topics adults frequently recall when talking 
about their experiences of school mathematics.

In the discussion that followed our initial conversation, several factors 
emerged as important. Peter had a strong sense that two dimensions are to 
do with area and squaring whereas three dimensions are related to volume 
and cubing. The move into three dimensions therefore led him logically to 
cubes rather than squares. Dimensionally, his rule was fine, since the cube 
root of the cube of a length is a length. In addition, the fact that the answer 
coincidentally came to an integer gave him extra confidence that all was well—
he even had a nice arithmetic sequence: 3, 4, 5 in the first case; 3, 4, 5, 6 in 
the second. Peter seemed to have acted in highly mathematical ways, thinking 
‘like a mathematician’, building on what he knew to form a conjecture about 
something else; it was just unfortunate that his conclusion happened to be 
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wrong. I was struck by the logic of what Peter felt would happen when ‘going 
up a dimension’ and the plausibility of his conjecture. Had it been correct, 
it would have been the kind of result that a teacher might have presented to 
a class with little justification—a mere wave of the hand and the words ‘by 
analogy’. So I am always rather disturbed when a potentially ‘obvious’ result 
is not right.

I often try to encourage students to generalise in mathematics lessons, as 
I see it as an extremely important action for them to take. As Mason (1996) 
expresses it:

Generalization is the heartbeat of mathematics, and appears in many forms. 

If teachers are unaware of its presence, and are not in the habit of getting 

students to work at expressing their own generalizations, then mathematical 

thinking is not taking place. (p. 65)

Yet here the generalisation had gone off in an erroneous direction. The 
neatness of the integer answer that Peter had obtained also made me question 
whether students are too often offered ‘nice’ examples that are intended to 
give them reassurance, and that perhaps this is not always a helpful practice. 
In this case, however, the integer answer was a complete fluke, but possibly 
this situation might have been anticipated and deliberately avoided by the 
question writer. On the other hand, I am very glad that the problem did arise, 
as it led to such an interesting encounter.

One way to imagine Pythagoras’ theorem in a third dimension is to extend 
the right-angled triangle (with hypotenuse c and legs a and b) into a right 
prism of length l, the squares on the sides of the triangle becoming cuboids 
on the faces of the prism  as shown in Figure 1, where the right-angled triangle 
is shown in black. Then, Pythagoras’ theorem is exactly equivalent to saying 
that the volumes of the cuboids on the two smaller rectangular faces sum to the 
volume of the cuboid on the largest face:
 a2l + b2l = c2l ⇔ a2 + b2 = c2, l > 0

Figure 1. Pythagoras’ theorem in a third dimension.
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I did not simply want to tell Peter that his idea was wrong. Instead, I sought 
to explore with him the consequences of his conjecture, so that he might 
perhaps meet some kind of cognitive conflict; something that would unsettle 
him and cause him to doubt and thus probe what he had done. Since we 
had been considering two and three dimensions, I first tried to envisage what 
Peter’s pattern would lead to in ‘one dimension’ as shown in Table 1. It would 
seem to be a = b, but that did not help to establish a conflict any more than 
venturing into four dimensions might. 

Table 1. Extending Pythagoras’ theorem to one dimension.

number of dimensions Peter’s equation

3 a3 + b3 + c3 = d3

2 a2 + b2 = c2

1 ?

Instead I asked Peter to find the magnitude of the vector (3, 4, 0). He 
realised before doing any calculations that this should give the same answer 
as the magnitude of (3, 4), since (3, 4, 0) is just another way of writing (3, 4). 
At this point, the fact that 3 4 0 53 3 33 + + ≠  persuaded him that something was 
wrong with his generalisation. I wanted him to see a problem with what he had 
done before offering him an alternative. I then drew out a 3–4–5 triangle and 
extended the diagram into a cuboid (Figure 2), helping Peter to see that the 
space diagonal was 5 2 6> . This revealed that cubing, perhaps surprisingly, 
does not actually come into it at all.

Figure 2. Challenging Peter’s conjecture.
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Afterwards, I thought more about this episode. In addition to Pythagorean 
triples, such as (3, 4, 5), which satisfy the equation a2 + b2 = c2 in positive 
integers, I was also aware of a few Pythagorean quadruples, such as (2, 3, 6, 7), 
which satisfy the equation a2 + b2 + c2 = d2 in positive integers. Since Peter had 
stumbled across 33 + 43 + 53 = 63, I looked for other solutions to the Diophantine 
equation a3 + b3 + c3 = d3, and found that it was Euler who discovered the 
complete solution, with Ramanujan later finding a simpler form (see Berndt 
& Bhargava, 1993).

I then began to wonder whether it was possible to find a set of three positive 
integers a, b, c such that:
 a2 + b2 + c2 = d2 

and a3 + b3 + c3 = e3

where d and e are integers. Such a vector (a, b, c) would give an integral value for 
the ‘magnitude’ whether calculated correctly or by Peter’s cubing-and-cube-
rooting method. In fact, this is possible, four examples which do this being 
(3, 34, 114), (14, 23, 70), (18, 349, 426) and (145, 198, 714). These examples, 
known as Martin triples, are given at http://sites.google.com/site/tpiezas/011 
(see number 12; accessed 30 September 2012), which reports the early 
twentieth-century work of Artemas Martin.1 The mathematics is demanding, 
but if negative integers are also allowed then there is a parametrisation.

It is easy for teachers to talk enthusiastically about the importance of 
students generalising their mathematics, but this will not inevitably lead 
to correct results unless carried out with sufficient thought. In many cases, 
students can generalise a given result in any number of different directions, 
not all of which may be mathematically accurate. What happens when ‘going 
up a level’ may not be straightforward, and generalisations, like anything else, 
must be treated as conjectures until proved.
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