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Zazkis and Mamolo (2011) explore the benefits of a teacher
employing subject-matter knowledge which is close to their
own mathematical horizon. Although this knowledge is well
beyond what the learner is seeking to master, Zazkis and
Mamolo present a convincing case for its importance in
influencing a teacher’s choices in the classroom. They
define knowledge at the mathematical horizon as under-
graduate mathematics or equivalent that has some bearing
on the mathematics the learners are doing. As Zazkis and
Mamolo explain, “The horizon being ‘farther away’ for the
teacher enables him or her to see more features and attrib-
utes of an object, and to gain a more in-depth appreciation
for what exists in the outer world” (p. 10). The model which
Zazkis and Mamolo outline might be illustrated as in Fig-
ure 1, with a progression upwards indicating greater
mathematical sophistication. Where the teacher’s advanced
mathematical knowledge meets the learner’s school mathe-
matics, there is fruitful interaction.

It seems to me, however, that there is another kind of
mathematical knowledge which a teacher may possess. This
knowledge is useful pedagogically but is not knowledge
which the learner might be expected to learn now, or even
(unless they become a mathematics teacher themselves) in
the future. It may or may not be currently “beyond” the
learner (in terms of difficulty), but it is different in kind from
the mathematics that they would be expected to learn. I will

refer to this knowledge as peripheral mathematical knowl-
edge and will give some examples below. Peripheral
mathematical knowledge can exist anywhere along the ver-
tical axis of “difficulty”, and I envision it coming in from the
sides, cushioning and supporting the learner’s mathemati-
cal trajectory upwards (Figure 2). Significantly, I would
probably not regard this knowledge as an important part of
the learner’s mathematical journey, although it is of great
value to the teacher, as I will attempt to illustrate.

Zazkis and Mamolo (2011) begin their article with the
question shown in Figure 3. As I read, I responded by saying
“35”, since the problem is familiar to me. This instant rec-
ollection of a result would be a simple example of peripheral
mathematical knowledge (mathematical trivia, in this case),
which is useful for a classroom teacher but not, perhaps, for
anyone else. I would not expect a professional mathemati-
cian to know it, nor would I regard it as an important fact
for learners to know. However, it can be convenient for a
mathematics teacher.

There are many mathematical facts that I did not know
before I began teaching and which I have picked up “on the
job”. For example, I know that there are 11 nets of a cube,
and I am glad that I know it. First, it is helpful to know that
there are sufficiently few for it to be worthwhile asking learn-
ers to find them all. Second, although when undertaking such
a task the value for learners is not in the final answer but in
the spatial thinking and reasoning involved in systematically
tackling the cases, knowing that there will be 11 nets helps
the teacher to manage the process more powerfully.

Such knowledge is more than just the memory of prob-
lems I have done before. I probably did these tasks myself at
school or since but, seeing little significance then in the final
answers, I subsequently forgot them. For me as a learner of
mathematics, this in no way diminished the value of the
experience. It was only when I began teaching mathematics
that such results became significant for me and only a math-
ematics teacher, I suggest, would see much value in them.
Peripheral mathematical knowledge is mathematical rather
than pedagogical, but it can be thought of as an applied
mathematics where the application is teaching. Just as an
engineer might study their pure mathematics differently
from the way in which a pure mathematician might, so a
mathematics teacher might find different points of interest in
a piece of mathematics as a consequence of being a teacher.

Examples of peripheral mathematical knowledge will
inevitably vary from teacher to teacher and with the age of
learners they work with. Below is a selection of some of my

Communications

Peripheral mathematical 
knowledge

COLIN FOSTER

Figure 1. Knowledge at the mathematical horizon.

Figure 2. Peripheral mathematical knowledge. 

Figure 3. How many triangles? (Zazkis & Mamolo, 2011, p. 8)
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own peripheral mathematical knowledge. In each case, I
would not care if learners did not have that knowledge (either
now or at any time in their future mathematical journey), but,
as a teacher of mathematics, I find it useful to know that:

• a cube has 9 planes of symmetry

• all planar quadrilaterals tessellate in 2D and tetra-
hedrons do not tessellate in 3D

• both x2 + 17x + 30 and 2x2 + 17x + 30 factorise (and
how to generate other such pairs)

• ,      ,      and     (and their reciprocals) are the
only 2-digit over 2-digit fractions that give equiv-
alent fractions by cancelling off identical digits

• 210 = 1024 without checking

• tan 35° is very close to 0.7

I claim that whereas the process of coming to know these
things may be of great value for learners, knowing them may
not be. Yet this is not because such knowledge is in any
sense beyond them. On the contrary, such knowledge is
never likely to assume much importance for them unless
they teach mathematics themselves. It is not over their hori-
zon; it is outside of their peripheral vision.

Peripheral mathematical knowledge encompasses more
than isolated facts and figures; knowing how to draw 2D
shapes that have any order of rotational symmetry but no
lines of symmetry, for instance, or knowing how to make
up equations of the form:

,

(with integers for a to h) which lead to quadratic equations
that factorise, might be included, and readers will be able to
think of many more.

Mrs White’s conjecture
When I read in Zazkis and Mamolo’s (2011) article that Mrs
White knew that the answer to the question shown here in
Figure 3 had to be a multiple of 5, my immediate reaction
was “surely not”; it just felt too simple. Does this response
represent some kind of mathematical knowledge? My expe-
rience with counting things in symmetrical arrangements has
led me to expect complexity, and the idea that five-fold sym-
metry implies that the number of triangles must be a
multiple of 5 seemed too easy. Sometimes, when a learner
offers me a conjecture which I do not know to be false, I
have the feeling “if that were true, I would know it already.”
Is a “gut reaction” or a feeling of unease a kind of mathe-
matical knowledge? How do such feelings develop? (The
answer “by experience” does not tell me much.)

I continued by thinking about a triangle and a square (Fig-
ure 4). The square contains 8 triangles, which is a multiple
of 4 (the number of sides), but a triangle is just 1 triangle, so
not a multiple of 3. This early exploration made me doubt the
conjecture. However, I am familiar with the way in which
some sequences “don’t work for the first one”, so I did not
get too excited. What is going on here seems to be cautious-
ness – a reluctance to assume that Mrs White is wrong, yet a
feeling that she may be. My decision to test the conjecture

in simpler cases and my awareness of exceptional first terms
in sequences feel valuable, but where do they come from?

The process I was going through reflects a common situ-
ation for me in the classroom. When something is said and
I do not know whether or not it is correct, I seek to behave
open-mindedly and mathematically in the way that I
respond. In this case, I drew examples with 6 and 7 sides
(Figure 5) but found that there were so many triangles that
it was too difficult to count them all and be sure that I had
not omitted any. My drawings were useful, however, since I
noticed that sometimes more than two lines pass through a
point. As a result, I felt that some potential triangles would
be lost, depending on the symmetry, and that any simple for-
mula would therefore be unlikely to work in all cases.
The general problem turns out to be difficult (Sommars &
Sommars, 1998) and, in general, the number of triangles is
not a multiple of the number of sides (see Table 1). 35 is a
multiple of 5, however, which makes me wonder whether
Mrs White is seeing something that I am missing or has an
intuition that I do not have. Perhaps Mrs White said what she
said for a pentagon but would not have said it for a hexa-
gon. This suggests to me that what a teacher “knows” in the
classroom is a personal and complex matter.

Conclusion
Within a traditional transmission-teaching paradigm, the
teacher’s subject-matter knowledge is identical in kind to the
knowledge which learners are acquiring (or seeking to
acquire): the teacher may be further down the road, but it is
the same road. But in classrooms in which learners are viewed
as constructing their own knowledge of mathematics through
personal exploration, the subject knowledge required by the
teacher is more complex and multifaceted. The subject-matter
knowledge that helps a teacher to teach mathematics is more
than simply what the learners will be learning later on. In
every case in Zazkis and Mamolo’s (2011) article, the
teacher’s horizon knowledge could be regarded as mainstream
mathematical knowledge that anyone studying more mathe-
matics for any purpose might be likely to learn if they go far
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Figure 4. Simpler examples. 

Figure 5. More complicated examples.
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enough. There is no reason to believe that the results referred
to would be of more use to a mathematics teacher than to any
other user of mathematics. By contrast, the peripheral mathe-
matical knowledge that I am seeking to describe lies on the
verges of this main highway, yet is no less important for that.

Shulman (1987) argued that pedagogical content knowledge:

represents a blending of content and pedagogy into an
understanding of how particular topics, problems, or
issues are organized, represented, and adapted to the
diverse interests and abilities of learners, and presented
for instruction. Pedagogical content knowledge is the
category most likely to distinguish the understanding of
the content specialist from that of the pedagogue. (p. 8)

It is perfectly possible to agree with Shulman’s final sen-
tence while also asserting that differing subject-matter
knowledge may also be an important distinguishing feature.

Note
[1] See the On-Line Encyclopedia of Integer Sequences (http://oeis.org),
sequence A006600.
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Like Zazkis and Mamolo (2011), we uphold the premise that
a solid knowledge of advanced mathematics is needed for
effective teaching of mathematics. With that in mind, we
are interested in discussing the nature of horizon content
knowledge, as used within the mathematical knowledge for
teaching framework (Ball, Thames & Phelps, 2008).

Mathematical knowledge for teaching (MKT) continues to
generate a huge number of papers and all kinds of praise and
criticism in scientific settings. Far from adding to this work,
our aim is to rescue the concept of horizon content knowl-
edge and re-conceptualise it. We wish to highlight a
fundamental premise underlying the MKT framework: teach-
ers’ mathematical knowledge belongs to their professional
knowledge, and thus has to do with, and cannot be separated
from, the teaching challenges that they approach in their
practice (Stylanides & Stylanides, 2010). Our critique of
Zazkis and Mamolo’s paper is much more in terms of their
assumptions about the nature of the mathematical knowledge
that elementary and secondary teachers need, rather than in
terms of their conceptualization of knowledge at the mathe-
matical horizon. 

Zazkis and Mamolo use several examples to illustrate
how certain knowledge of what they consider to be
advanced mathematics is used by teachers to deal with class-
room situations. In the first one, the teacher asks the students
to calculate the number of triangles in a regular convex pen-
tagon with all diagonals drawn in. Some knowledge of
symmetry helps her to see that the number of triangles has to
be a multiple of five and to solve the mathematical prob-
lem. With this solution in mind, she directs her pupils to
solve the problem using symmetries. It is clear that her
advanced knowledge on this topic permits her to deal with
a teaching situation in a very elegant way. This example
reinforces the premise that advanced mathematics is the best
- even the essential - background for teaching mathematics.
However, after reading Zazkis and Mamolo’s description of
the situation, we doubt whether this way of using advanced
knowledge, and probably the way in which that knowledge
was acquired, allows teachers to build on students’ knowl-
edge or to interpret alternative solution paths implicit in
students’ answers. Mathematical problems like that of count-
ing triangles behave very differently in a pure mathematical
setting than in an educational context. They become much
more complex in an educational context because, among
other things, they necessarily involve the mathematical rea-
soning of the people we have the responsibility to teach.

n Number of triangles Is the number of triangles
a multiple of n?

3 1 NO
4 8 yes
5 35 yes
6 110 NO
7 287 yes
8 632 yes
9 1302 NO

10 2400 yes
11 4257 yes
12 6956 NO
13 11 297 yes
14 17 234 yes
15 25 935 yes
16 37 424 yes
17 53 516 yes
18 73 404 yes
19 101 745 yes
20 136 200 yes
21 181 279 NO

Table 1. The number of triangles in a regular n-gon in
which all the diagonals are drawn; situations in
which the number of triangles is not a multiple of
the number of sides are shaded [1].
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There was probably no way for these 8-9 year old students to
understand why the teacher directed them to identify differ-
ent kinds of triangles, and then look for five triangles of each
kind. Moreover, this approach may reinforce the precon-
ception that problem solving necessarily calls for some
brilliant idea, without which the solution remains utterly
unattainable.

About the kind of mathematical knowledge
that teachers need
Zazkis and Mamolo lead us to conclude that advanced math-
ematical knowledge is a necessary tool for the teachers to
solve, in the classroom, the problems they pose. We cer-
tainly agree, but to us it feels like another case of those
existence theorems that leave us longing for an explicit con-
struction procedure. We maintain that another perspective
is possible, one that also considers, and even advances, the
knowledge of the mathematics education community. Let
us go back again to one of the examples used in the paper: in
Example 3 they describe how the teacher’s knowledge about
group theory sparks her insight to interpret several confu-
sions and errors concerning the reciprocal and the inverse
of a function in terms of a misgeneralization of previous
work with negative exponents. Zazkis and Mamolo’s
description of the teaching situation speaks very well about
this (fictional) teacher, and also about the advanced mathe-
matical knowledge the teacher seems to have, but very badly
about her mathematics education teachers. Students’ confu-
sion about 1/f(x) and f-1(x) is well known and the teacher
should have heard about it in any course about teaching
analysis. The interesting question for us, which is again a
mathematics education problem, is what kind of solid edu-
cation in analysis and group theory the teacher should have
received in order to avoid the genesis of this misunderstand-
ing. Perhaps she would not have been surprised about her
students’ confusion if she had been guided to reflect on the
structure of the set of functions under composition immedi-
ately after the study of the multiplication of functions, trying
to understand why the properties of multiplication in Q or
R do not hold for general functions. In any case, giving
advanced mathematical knowledge to teachers without tak-
ing into account its relevance for teaching practice is like
providing a carpenter with a new, unknown tool without any
information about how it can facilitate her work. Surely,
with observation and reflection she will be able to elucidate
some aspects of its uses and possible potentialities, but her
professional problems are different. 

Moreover, advanced mathematical knowledge is not
meant to be directly applied in teaching situations, but
instead is an essential ingredient for a deep understanding
of basic mathematics, to an extent not usually covered in
the syllabus of many mathematics faculties. To better
explain what we intend to say, we use an example drawn
from our own research, in which students had just started a
unit on equivalent fractions:

Mr. Paulino explains the idea of equivalent fractions.
He takes a piece of paper, folds it twice in half and col-
ors one of the rectangles obtained. He unfolds it and
says: “We have colored one quarter of the paper”. The

students nod patiently. Afterwards, Mr Paulino folds
the same piece of paper three times and, when unfold-
ing it, he says: “The fraction colored is now two
eighths. One quarter and two eighths are equivalent
fractions because they represent the same quantity.” He
writes on the board:

and says: “Notice that 1 times 8 is 8, and 4 times 2 is 8.
One quarter and two eighths are equivalent fractions
because their crossed product is equal.” He continues by
saying: “The second fraction is obtained by multiplying
both numerator and denominator of the first one by 2.”

By folding a piece of paper, he implicitly defines a fraction
as a part of a whole. Immediately afterwards, he refers to a
fraction as the division between two numbers when he
asserts that equivalent fractions represent the same quan-
tity. The teacher knows different ways to define a fraction
from his university studies and, in this point, we agree with
Zazkis and Mamolo, but we consider that deeper reflection
is needed. 

There is an intraconceptual connection (inner horizon,
using Zazkis and Mamolo’s terminology) between these two
meanings of a fraction which is not trivial for the students.
This reflection is crucial for the mathematics teacher and,
perhaps, not so much for others using mathematics profes-
sionally. The connection is not made explicit by the teacher,
who freely moves between these two meanings and leaves
the students to their own devices in the process of giving
them coherence. Moreover, the definition of equivalent frac-
tions is supposed to be generalised from one particular case
to every pair of equivalent fractions. Immediately after-
wards, the teacher writes down the same fraction and
reduces to an observation what is usually taken as the defi-
nition of the equivalence relation in the field of fractions of
Z: two ordered pairs of integers (a, b) and (c, d), with posi-
tive b and d, are equivalent if a·d = b·c. It is introduced as
an almost mnemonic rule and it does not connect with the
meaning of a fraction as a part of a whole. The “rule” is
meaningful only once the students are familiar with the mul-
tiplication of fractions. 

Moreover, the teacher’s introduction to equivalent frac-
tions shown in this episode ends by explaining a procedure
to obtain equivalent fractions, namely, by multiplying both
the numerator and denominator of the first one by 2. This
procedure of generating equivalent fractions is normally pre-
sented using only integer multiples and produces a
foundational misunderstanding for the students: they assume
equivalent fractions to be characterized by one of them
being the result of multiplying/dividing the numerator and
denominator of the other by the same integer, which is not
the most general operation possible (for instance, 4/6 and 6/9
are equivalent). If this is considered advanced mathemati-
cal knowledge, it is certainly not the focus of general
university mathematics.
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About the theoretical approach to horizon
content knowledge
The notion of horizon content knowledge is given by Zazkis
and Mamolo in terms of the application of the notion of
“advanced mathematical knowledge”, which corresponds
to the “knowledge of the subject matter acquired during
undergraduate studies at colleges or universities” (Zazkis &
Leikin, 2010 p. 264). The notion is therefore grounded in the
power of an institution and those who work there. This kind
of approach leaves very little space for a deep intellectual
debate about how we can understand the problems of math-
ematics education. We emphasize that our professional task
of teaching mathematics to primary and secondary students,
as well as to future elementary and secondary school teach-
ers, requires a much broader perspective on the nature of
knowledge.

We mentioned at the beginning of this communication that
our purpose is to explore the conceptualization of horizon
content knowledge. Zazkis and Mamolo’s description in
terms of inner and outer horizon is very stimulating and per-
mits us to refine our own approach, which conceptualizes
horizon content knowledge in terms of connections between
mathematical concepts and ideas, grounded in the coherence
of mathematics, in which all concepts and ideas are precisely
defined and logically interwoven.

Mathematical content knowledge cannot be solid without
connections, and this leads us to think about horizon con-
tent knowledge as a key necessary prerequisite of
mathematical knowledge for teaching. However, after ana-
lyzing Zazkis and Mamolo’s paper, we have the feeling that

they articulate all their reflection around the premise that
mathematical teaching problems, and thus theoretical out-
comes in the field of mathematics education, should be
subordinated to the problem of teachers’ learning of
advanced mathematics. We have focused our response on
discussion of this aspect, emphasizing the need for teachers
to construct deep knowledge of the connections within
mathematical content as a basis to enhance students’ learn-
ing of mathematical structure (Vale, McAndrew & Krishnan,
2011). We hope to have further opportunities to think
together about the conceptualization of horizon content
knowledge, and thus on its impact on practice and training.
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The selected quotations in this issue commemorate the life and work of Martin Hughes (1949-
2011). Children and Number, originally published in 1986, was reprinted at least twelve times.




