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“‘Ambiguity’ is in itself an ambiguous word.” –
Leonard Bernstein

A formative experience of my teenage years was watching
a worn-out film that my music teacher was eager for us to
see of the conductor and composer, Leonard Bernstein, talk-
ing passionately about the role of ambiguity in music
(Bernstein, 1976). I had never previously considered ambi-
guity as anything more than an annoyance and a failure of
communication. As chiefly a science and mathematics stu-
dent, I admired plain speaking and wondered why poets,
for instance, could not simply state clearly and concisely
what it was they were trying to say. At times, I suspected that
those who loved to speak in vague and colourful ways were
simply disguising with purple prose their lack of anything
much to say. I was drawn to the precision and economy of
mathematics yet, at the same time, I also loved music. Bern-
stein’s series of talks persuaded me that I had completely
failed to appreciate an enormously important aspect of the
arts (Tormey & Tormey, 1983).

An ambiguity is different from mere vagueness or woolly
imprecision. Byers (2007) has offered the following defini-
tion of ambiguity, adapting one originally offered by Arthur
Koestler for creativity:

Ambiguity involves a single situation or idea that is
perceived in two self-consistent but mutually incom-
patible frames of reference. (p. 28)

In the arts, an ambiguity may set up a lively tension between
parallel ideas or provoke a crisp resolution; Bernstein fre-
quently referred to ambiguities as beautiful. Musical
ambiguities can relate to key (polytonality) or timing (poly-
meter). A good example of musical ambiguity is the tritone
(half an octave), which is a restless-sounding interval, seek-
ing some kind of resolution. It can expand to a minor sixth
or contract to a major third. Figure 1 shows an example of
both possibilities, in the one case implying C major and in
the other, F# major. [1] Heard alone, the tritone could lead to
either key and musical suspense is created by not knowing
which way it is going to go. Within a particular musical con-
text, one resolution might seem more likely, giving the
composer the option of either fulfilling our expectations or
provoking surprise.

While ambiguity may be delightful in the arts, it seems com-
mon sense to many that ambiguities are not at all desirable in
a discipline such as mathematics. The stereotypical mathe-
matician is straight talking, matter-of-fact and to-the-point
and therefore unlikely to appreciate delicate ambiguities. It is
doubtful that any mathematics paper has been praised for its
ambiguity; on the contrary, an elegant proof is more often seen
as one that is efficient, precise and direct (Dreyfus & Eisen-
berg, 1986). Gupta (2001) describes the conventional contrast
perceived between the arts and the sciences:

Mathematical metaphors are powerful analytical tools
precisely because of the unequivocal relationships
between their components, whereas the power of the
literary metaphor derives from the incertitude in the
connections between its parts. (p. 589)

More recently, however, an important role for ambiguity has
been proposed in the sciences and mathematics. Byers
(2007) has argued persuasively that at one level, there is no
difference between the arts and the sciences – both are cre-
ative human endeavours:

Ambiguity plays a role in mathematics that is analo-
gous to the role it plays in art – it imbues mathematics
with depth and power. Ambiguity is intrinsically con-
nected to creativity. (p. 11)

Indeed, Byers has gone much further and argued for the
necessity of ambiguity in mathematics:

Ambiguity is not only present in mathematics, it is
essential. Ambiguity, which implies the existence of
multiple, conflicting frames of reference, is the environ-
ment that gives rise to new mathematical ideas. (p. 23)

This is a strong statement, but it is amplified and supported
to a considerable degree by Grosholz (2007) in her compre-
hensive summary and perceptive analysis of instances of
what she terms “productive ambiguity” in the course of the
history of science and mathematics:

When distinct representations are juxtaposed and
superimposed, the result is often a productive ambigu-
ity that expresses and generates new knowledge. (p. 25)

An ambiguity is not the same as an error, a paradox, a con-
tradiction, an absurdity or a fallacy. An ambiguity derives
from a significant degree of uncertainty, caused by a lack
of specification regarding a particular feature or an unstated
assumption, paradigm or frame of reference. This results in
an ability to see the same situation in more than one way.

PRODUCTIVE AMBIGUITY IN THE 
LEARNING OF MATHEMATICS

COLIN FOSTER

Figure 1. Musical ambiguity: two different resolutions of a
tritone.
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There are many kinds of mathematical ambiguity:

1. Symbolic ambiguity, such as the same letter being
used to stand for two different things or the × sign
being used for multiplication of real numbers or for
the cross product of vectors. This sort of ambigu-
ity is typified by jokes such as:

I include in this category ambiguities resulting
from notational abbreviation, such as missing sub-
scripts on partial derivatives to say which variables
are held constant (e.g., in thermodynamics, which
could be or      ) or omitted limits on summation
signs (e.g., ), which may present no difficulties
if only one meaning is taken, or may fatally inter-
fere with understanding.

2. Multiple-solution ambiguity, such as with inequal-
ities (e.g., x > 7, but how much greater?) or the two
roots of a quadratic equation. Multiple roots, for
example, can be viewed either as competing
numerical alternatives or as happily co-existing
points on the x-axis of a graph.

3. Paradigmatic ambiguity, such as Barwell’s (2005)
example of children perceiving thin plastic objects
either as idealised two-dimensional shapes (as the
manufacturer may have intended) or as three-
dimensional objects of very slight thickness. In this
case, we see different shared assumptions operating
in a particular community of practice (Wenger,
1999). An algebraic example would be solving a
pair of linear simultaneous equations in two
unknowns, where the student may shift, perhaps
imperceptibly, from treating the letters as unknown
values to variables that (in each separate equation)
can take any real value, enabling the graphs to be
drawn and the point of intersection to be found.
Mason and Pimm (1984) describe ambiguities
between fractions and rational numbers and many
writers have discussed the pregnant ambiguity of
an expression such as 3 + 2 to represent both the
process (“adding two numbers together”) and the
product as an object in itself (Gray & Tall, 1994).

4. Definitional ambiguity, where there is more than one
way of interpreting the meaning of a mathematical
term. For example, the word “radius” can represent
the line segment itself or its length, “the length of the
radius” being unnecessarily cumbersome – tautolo-
gous, even – in the UK, although it is common in the
US to say, for instance, “the measure of the angle is
60° ” rather than just “the angle is 60° ”. However,
too-close associations, for example of a letter “c” and
“a chair”, are well-known to lead to letter-as-object
difficulties, such as “chair = 4 legs” being coded as c
= 4l and then, when the number of legs (l) is 8, getting
the answer “32 chairs” (Küchemann, 1978).

Ambiguities are to do with assumptions and perspective.

The well-known Indian story of the elephant and the blind
men (Saxe, 1963) describes how they each touch a different
part of the elephant’s anatomy and so form different, con-
tradictory views of the nature of the animal. The all-seeing
teller of the story views the complementarity of the con-
flicting observations which is hidden from any one
individual. To become enlightened, the blind men need to
exchange places with each other and experience other per-
spectives. Ambiguity can be seen as an opportunity to
experience diverse viewpoints simultaneously. Johnston-
Wilder and Mason (2005) have written, for instance, about
the ambiguity between recognising a relationship and per-
ceiving a property.

In mathematics education, ambiguity has generally suffered
a bad press, being lumped together with misconceptions and
misunderstandings as something to be circumvented at all
costs. Hence, for example, the ubiquity in schools of
mnemonics such as BIDMAS or PEMDAS to standardise
the order of arithmetic operations. Avoiding ambiguity fre-
quently involves creating rules to specify that “when we
say X we mean Y”, which can hamper opportunities for dis-
cussion. Referring to the rather dismissive view of
ambiguity presented by the UK’s National Numeracy Strat-
egy, Barwell (2003) has written:

Ambiguity forms an important discursive resource in
school mathematics discourse, and perhaps in all math-
ematics discourse. It is the potential for ambiguity
inherent in all language, that allows students to inves-
tigate what it is possible to do with mathematical
language, and so to explore mathematics itself. If, as
suggested by the National Numeracy Strategy, all
ambiguity is ‘sorted out’ as soon as it arises, valuable
opportunities for students to learn the subtleties of
mathematics could be lost [...] Rather than ‘sorting out’
ambiguities, teachers should see them as opportunities
for mathematical exploration. (pp. 4-5)

If teachers specify mathematical tasks and definitions too
tightly, they leave students little room for manoeuvre,
restricting their freedom to explore interesting tensions and
possibilities. Sometimes an ambiguity can be quickly
resolved by providing additional information but, where the
ambiguity is potentially productive, the dilemma, the tension
and the contrast is lost and the energy is dissipated. When an
ambiguity is destroyed carelessly, students may end up
knowing more, in a narrow sense, but nonetheless are some-
how poorer for it, since the opportunity to negotiate meaning
has been snatched away.

Case study: surface area and volume
Potentially productive ambiguities can arise in many situa-
tions in the mathematics classroom while students are
engaged in tasks relating to different areas of the subject. It
is well-established that students of many ages experience
difficulties working in three dimensions (Bishop, 1980), fre-
quently exhibiting varied understandings of volume,
capacity and surface area (Potari, & Spiliotopoulou, 1996;
Tirosh & Stavy, 1999), for instance, and a reluctance to
employ spatial visualization (Presmeg, 2006). Children are
known to interpret the words “hollow” and “solid” in non-
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technical and inconsistent ways (Jones, 1984). In the lesson
discussed below, however, the at times heated discussion
between six students springs from definitional ambiguity
relating to several features of these terms. Having defini-
tions-in-progress affords an opportunity that would be
removed if the students had finalized, formal definitions of
surface area and volume from the start.

The students in question were aged 14-15 and were used to
working in informal ways, where ideas flowed freely and
conjectures and were made, tested and modified in an atmos-
phere that was, for the most part, perceived as accepting and
friendly. The situation was observed opportunistically and I
recorded the students’ comments immediately after the lesson
and wrote up the incident more fully later the same day.

One group of six students had been working on the fol-
lowing question: 

Most of the students had calculated 4 × π × 52 for the sur-
face area of a whole sphere and halved it, obtaining 50π cm2,
a value that they had noted was exactly two-thirds of the cor-
rect answer, 75π cm2. Attempts to isolate the error had failed
and the consensus when I arrived at the group was that the
published answer was incorrect.

I asked the students to visualize a solid hemisphere and
to describe its surface, which led to a realization that the
base contributed an additional πr2 to the surface area, appar-
ently clearing up the problem. But in fact this marked the
beginning of a new discussion: [2]

Adam: So we were right for a hollow hemisphere?

David: Yes, we were doing hollow but it said “solid”.
Read the question!

Kate: No, because if it’s hollow then it’s got an inside
as well. So you’ve got 2πr2 on the outside and
another 2πr2 on the inside, so it’s 4πr2 in total.

Adam: So that’s the same as the surface area of a solid
sphere. That’s weird.

A particular image for surface area had been current within
the class: you dip the object into a vat of paint and however
much sticks to the surface is the surface area of the object.
This was an extension of the view that the area of a two-
dimensional shape is the amount of ink needed to colour it
in, whereas perimeter is the amount of ink needed to draw
around the edge. But in two-dimensional space we had never
considered turning the shape over and counting the area of
the back of the surface as well. In three dimensions this pos-
sibility now seemed unavoidable to Kate, presumably
because now that the surface was no longer flat, its “other”
side was more apparent. The ambiguity here is between sur-
face area of the outside only or of the outside and the inside
together.

David: But if you’re counting insides, then a hollow
sphere would be 8πr2 because that’s got an
inside as well.

At this point, some students felt that the inside surface area
would be slightly smaller than the outer surface area; others
that the difference would be negligible; and others that they
were exactly the same. (Does surface have any thickness?)
But Kate had a different objection:

Kate: I don’t think that’s right. You never count
insides, because if it’s a whole sphere then you
can’t even tell if it’s got an inside or not, because
you can’t see in it. And the paint doesn’t get to
the inside.

David: It could be see-through, so you could tell, or
you could weigh it or something, or you might
know because of how you made it or what you
made it out of.

I envisaged a hollow sphere with an infinitesimally small
hole and the group were divided over whether the surface
area of that would be 4πr2 or 8πr2 (or 4πr2 or 8πr2 minus a
tiny bit). Can molecules of paint get through an infinitesi-
mally small hole?

The discussion then shifted to a hollow cylinder. The feel-
ing now was that you definitely had to count the inside
surface, so most now agreed that the surface area of a hollow
open cylinder of radius r and height h was therefore 4πrh
rather than 2πrh. I reminded the group that when they had
recently calculated the surface area of rectilinear doughnut
shapes (see Figure 2) they had indeed included all the
exposed surfaces.

Sarah moved the discussion towards volume. Other stu-
dents suggested that volume is “easy” – you can just halve
it for a hemisphere, “end of story”.

David: It’s like with area and perimeter; area’s easy
because you don’t have to worry about the
edge when you cut something in half. Vol-
ume’s the same – it doesn’t matter if it’s
hollow or solid, the volume is the same.

Sarah: But that’s stupid. If something’s hollow then
it hasn’t got any volume!

This comment implied that the volume of a hollow hemi-
sphere is zero. Sarah explained that she was envisaging
placing the object in paint and looking at the volume of paint
displaced – a hollow hemisphere would displace nothing,
whereas a solid hemisphere would displace       . So there
was ambiguity regarding volume too – does volume relate to
material or to space?

Adam: But then a hollow sphere is exactly the same
as a solid one, because it’s empty but the paint
can’t get in.

Ann: It might float – then it wouldn’t displace any
water.

Find the total surface area of a solid hemisphere of radius
5 cm.

Figure 2. (a) a rectilinear doughnut (b) a cylinder
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It is interesting to consider the implicit assumptions
employed here. A hollow hemisphere is tacitly being taken
to have zero (or negligible) thickness, so that when sub-
merged it displaces no water, since the volume of a
two-dimensional surface is zero. Similarly, does Ann think
that floating bodies displace no liquid? Or does she suppose
that a floating hollow sphere has zero mass, so it can float
without sinking at all into the water? 

There was much confusion between capacity and volume,
with other students interpreting volume as the quantity of
liquid that the object could hold.

David: A cup doesn’t have any volume if it’s empty.

Chris: Yes it does, it’s full of air.

David: Then it’s the air that has the volume; the cup
still hasn’t got any volume, except the bit that
it’s made out of.

Chris: If it hadn’t got any volume you wouldn’t be
able to put anything in it!

Ambiguity between volume and capacity (a word no-one
used) meant that capacity depended for some on whether the
object had a “bottom”: a hollow cylinder could not hold a
liquid, so had no capacity, although it was capable of con-
taining a fixed volume of a gas, such as air, or a stackable
solid. But what if you stood its end on a table – then you
could fill it with something like sand, couldn’t you?

Adam: Volume is how much space something has
inside.

Chris: Well then the volume of the solid one is zero
– because it’s got no space in it.

Everyone seemed to disagree with this, including Chris.

Kate: Volume seems to mean two completely oppo-
site things; either how much room it has in it
or how much room it doesn’t have in it!

I commented that most of an atom is empty space, so even
“solid” things are almost entirely empty and so we are per-
haps always working out the volume of mainly empty space.

Conclusion
I have no doubt that this was an enjoyable and valuable dis-
cussion, but it was possible only because of ambiguity with
regard to at least five matters:

1. Is the concave side of an open surface part of the
surface area?

2. Is the interior surface of a closed shape part of the
surface area?

3. Does the volume of a closed object include the
space inside?

4. Is the volume of an open object the same as its
capacity?

5. Can an object have capacity if it cannot contain a
liquid?

Had there been an attempt to resolve these definitional ambi-

guities at the outset, the discussion would not have taken
place as it did – perhaps not at all. Settling these matters by
laying down watertight definitions at the start would have
killed the episode (Morgan, 2005). Putting this more posi-
tively, ambiguity permits variety of thought and expression
and allows (forces, even) alternatives to be considered, pro-
viding students with the opportunity to probe mathematical
structure. Barwell (2003) has commented:

Once some degree of ambiguity is constructed [...] a
space opens up for the students to explore [...] In con-
sidering the role of ambiguity in mathematics
classroom interaction, therefore, the aim is to under-
stand how ambiguity arises for participants, how they
deal with it and what it does in relation to the mathe-
matical (or other) work of the discussion. (p. 4)

Ambiguity is necessary for ideas to move forward because it
creates an instability in what is currently known that allows
the formation of new knowledge. This relates to a fallibilist
approach to knowledge and truth and is essential for the sort
of fallibilistic pedagogy exemplified here (Ernest, 1999). It
is vital for mathematical concepts to remain negotiable at the
social level if discussion is to be genuine and meaningful.
Tall and Vinner (1981) warn of the dangers of students rely-
ing exclusively on imprecise “concept images” that they
have built up for themselves against more formal and accu-
rate “concept definitions”. Their idea of progress in learning
is for the concept image to adjust increasingly to encom-
pass more of the implications of the concept definition, so
that instinctive responses more closely match reasoned con-
clusions. This means that, in the ideal, concept images are
constantly shifting in the direction of greater mathematical
rigour. Furthermore, it can be argued that in many cases this
shifting process itself is more important than the final end-
point of a formally stated result. Learning cannot be
measured simply by the number of concrete results mas-
tered, but rather by the depth and quality of the mathematical
thinking involved along the way.

The business of tightening up a concept image may be of
more mathematical significance than the “final” definition
arrived at, which could justify teachers in deliberately pro-
longing a productive ambiguity. By actively avoiding ironing
out problems too soon, teachers would be deliberately delay-
ing their students’ arrival at mature concept definitions,
prioritizing the process over the product. Teachers might do
this by provoking their students to think about alternatives, or
by playing devil’s advocate, and this could afford students
with increased opportunities to reason through the implica-
tions of their partially formed concept images.

When a student arrives at what seems like an all-encom-
passing mathematical definition or theorem that appears to
allow no room for manoeuvre, that particular mathematical
journey is over. Students need not always be rushed to that
point. On the one hand, firm understandings enable us to
build and grow further ideas, which is one way in which the
subject develops; on the other hand, fixed ideas take away
some of the opportunities to debate and design other possi-
bilities along the way.

For me, the episode discussed above had value beyond the
immediate consideration of surface area and volume. The
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questions arose from the students rather than from the
teacher and the discussion and the thinking involved dis-
played impressive mathematical reasoning. To dismiss the
difficulties described as “just definitional” or as arbitrary
rather than necessary (Hewitt, 1999) would be to miss the
point. Adam’s comments suggest a searching for definitions
that will facilitate communication, while the other students
tended to discuss the contextual behaviour of objects. Defi-
nitions matter in mathematics, but it also matters a great deal
how they are arrived at in the classroom. It is important to
recognise historically the social processes which led to their
construction in response to questions that human beings
have raised. Much is arbitrary in the sense that it could con-
ceivably have been otherwise, but nothing is arbitrary in the
sense that it came about for no reason.

The mathematics teacher is responsible for inducting stu-
dents into a mathematical community that takes certain
things for granted, yet I would much rather students worked
with slightly non-standard versions of definitions that are
meaningful to them and which they have arrived at by
mutual thought, rather than with more typical definitions
imposed on them in a more dictatorial manner. The Nobel-
prize-winning physicist, Richard Feynman (1985) describes
how as a teenager he developed his own idiosyncratic nota-
tions for school mathematics:

I didn’t like the symbols for sine, cosine, tangent, and so
on. To me, “sin f” looked like s times i times n times f! So
I invented another symbol, like a square root sign, that
was a sigma with a long arm sticking out of it, and I put
the f underneath. For the tangent it was a tau with the
top of the tau extended, and for the cosine I made a kind
of gamma, but it looked a little bit like the square root
sign. […] I thought my symbols were just as good, if not
better, than the regular symbols – it doesn’t make any dif-
ference what symbols you use – but I discovered later
that it does make a difference. Once when I was explain-
ing something to another kid in high school, without
thinking I started to make these symbols, and he said,
“What the hell are those?” I realized then that if I’m
going to talk to anybody else, I’ll have to use the standard
symbols, so I eventually gave up my own symbols.

Although Feynman gave up inventing new symbols for well-
established functions, throughout his career he established
an unparalleled reputation for originality and creativity (Gle-
ick, 1994). Definitions may be provisional and pragmatic,
but some agreement is necessary for collaborative work to
develop. However, I believe that the productive nature of
many mathematical ambiguities is enough to justify valu-
ing and even conserving them for a while. Learning how to
harness mathematical ambiguity for pedagogical benefit will
require deeper engagement with the factors that make ambi-
guities more or less productive for students in particular
situations.

Many questions remain. Is ambiguity equally productive
in all areas of school mathematics? Could it be significant
that Barwell’s example (2005) and the one reported here
both relate to geometrical topics? It would be interesting to
try to locate similar instances in more algebraic and numer-
ical areas. Are the different kinds of ambiguity listed earlier

equally relevant to different mathematical areas? The over-
riding question is: To what extent, under what circumstances
and in what ways can ambiguity be beneficial to learners?
The incident recounted here was serendipitous; the peda-
gogical challenge is to explore ways in which productive
ambiguity can be noticed and even planned for and pur-
posefully exploited for the learning of mathematics.

Notes
[1] The F in the second example might more correctly be written as an E#,
so that the interval is a diminished fifth rather than an augmented fourth.
[2] All students’ names are pseudonyms.
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