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92.16 Avoiding Pythagoras

Readers will be familiar with the ‘tilted square’ method (Figure 1) of
showing, without resorting to Pythagoras' Theorem, that the diagonal of a
unit square is v2 units long. This can be useful with pupils who have not
met the theorem, or for variety or, indeed, can be a means of introducing the
theorem [1].

FIGURE 1

The area of the shaded square is four half-squares, that is 2 square units
(taking the grid squares as unit squares). So the sides of the shaded square
must be of length v/2 units.

What may be less familiar (it certainly was to me) is that a similar
procedure on an isometric grid can show, again without Pythagoras'
Theorem, that the height of an equilateral triangle with unit side length is
14/3 units (Figure 2).

FIGURE 2
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NOTES 111

The central shaded hexagon and the large hexagon are both regular and
therefore similar.

By counting small equilateral triangles, the area of the central hexagon
equals 6 equilateral triangles and the area of the large hexagon equals 18
equilateral triangles. Therefore the areas are in the ratio 1 : 3, so their sides
must be in the ratio 1 : 4/3. So the lengths of the sides of the large hexagon
are /3 units (taking the equilateral triangles to have unit side length), which
means that the height of one of the equilateral triangles is 4V/3 units.
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92.17 Magic knight's tours for chess in three dimensions

The problem of a knight's tour on a square board (2-dimensional) is over
1000 years old and has a vast literature but its natural extension to three
dimensions has received scant attention. Here, the knight is allowed to jump
over the board and land up in a cell in a vertical plane. This increases the
mobility of the knight considerably and the author has observed some
interesting properties. Perusal of literature shows that Gibbins [1] had looked
into the knight's tour in three dimensions. Gibbins asserts, ‘The smallest
lattice in which this (closed tour) can be done is a3 x 3 x 4 cuboid’, that is
36 cells; he cites an example by E. Huber-Stocker, Geneva. The author
disagrees with Gibbins because it is possible to construct closed, as well as
open, tours in a much smaller lattice. In three dimensions, the author has
observed that 3 x 4 x 2 (24 cells) is the smallest lattice in which both
closed and open tours are possible. This can be looked upon as two 3 x 4
boards, one above the other. Figure 1 is an example. Since there are
thousands of such tours, they are of little interest. However, tours having
magic properties are a different story. Figures 2 to 4 are such tours. The
reader can visualise them in three dimensions by stacking the layers, one
above the other, in alphabetical order. They have all the rows summing up to
magic constant 50. This means that, since there are an odd number of terms
in the columns, they cannot have magic properties. There are hundreds of
such tours. If we consider a lattice with a square base then 4 x 4 x 2 (32
cells) is the smallest lattice in which both closed and open tours are possible.
The author has constructed sixteen interesting tours as shown in Figures 5 to
20. All these tours are magic in rows and columns with the magic constant of
66. Figures 6 and 15 have 8 pillars summing up to half the magic constant.
They are shown in dark colour. Each of the 2 x 2 mini-squares also sums up
to the magic constant. Here, open and closed tours are equal in numbers. The
author proposes to call the tours from Figures 16 to 20 ‘a quintuple of tours’
as they all have an identical layer and thus having an aesthetical appeal.
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