Triangular Roots

COLIN FOSTER

This article defines triangular roots of real numbers by analogy with square roots. It shows that the triangular root of a real number can never be purely imaginary: it is either real or complex with a real part of $-\frac{1}{2}$.

We all know about *square roots*. For a nonnegative real number a, we say that b is a square root of a if $a = b^2$. When a > 0, it has two square roots and we denote the positive one by \sqrt{a} ; when a = 0, there is just one root: zero. Thus the sequence of perfect squares is $1, 4, 9, 16, \ldots$ and

$$1 = \sqrt{1}$$
, $2 = \sqrt{4}$, $3 = \sqrt{9}$, $4 = \sqrt{16}$

and so on. The nth perfect square is the number of dots in an $n \times n$ square array, as shown in figure 1.

Now can we define a triangular root? The nth triangular number t_n is defined by

$$t_n = 1 + 2 + 3 + 4 + \dots + n = \frac{1}{2}n(n+1),$$

and is the number of dots in the first n rows of the triangular array shown in figure 2. For a real number a, we say that b is a triangular root of a, and write $b = \operatorname{tr}(a)$, if

Figure 2

Figure 3

Thus, the sequence of triangular numbers is 1, 3, 6, 10, ... and

$$1 = tr(1),$$
 $2 = tr(3),$ $3 = tr(6),$ $4 = tr(10),$

and so on.

From (1),

$$b^2 + b - 2a = 0$$

which is a quadratic equation in b with roots

$$b_1, b_2 = \frac{-1 \pm \sqrt{1 + 8a}}{2}.$$

As with square roots, we take the positive sign to give

$$tr(a) = \frac{-1 + \sqrt{1 + 8a}}{2}.$$

This choice of sign agrees with

$$1 = tr(1),$$
 $2 = tr(3),$ $3 = tr(6),$ $4 = tr(10),$

and so on, and provided that $a \ge -\frac{1}{8}$, it will have a unique real triangular root.

We know that $\sqrt{1+8a}$ is a real number when $1+8a \ge 0$ and a purely imaginary number when 1+8a < 0 (e.g. $\sqrt{-4}=2i$), and the square roots of real numbers lie on the real and imaginary axes. So if $a \ge -\frac{1}{8}$, the triangular roots lie along the real axis, whereas if $a < -\frac{1}{8}$ then they lie along the line $x = -\frac{1}{2}$ (see figure 3).

Colin Foster is a Senior Research Fellow in the School of Education at Nottingham University. He has published many books of ideas for mathematics teachers: see www.foster77.co.uk for details.