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Trigonometry Without Right Angles

COLIN FOSTER

This article describes how trigonometric functions can be defined for

non-right-angled triangles. In particular, the ratios esin, ecos, and

etan, corresponding to the sine, cosine, and tangent ratios, are defined

for triangles containing a =/3 angle. Some of the implications are

discussed, including the graphs of these functions and the small-angle
approximations.

How important are right angles for trigonometry? The standard trigonometric functions are
defined as the ratios of sides within right-angled triangles, but is this essential? On a square
lattice it makes sense to draw right-angled triangles and label the sides ‘opposite’, ‘adjacent’,
and ‘hypotenuse’, but what about on an isometric grid?

We will label the sides of a triangle containing a % angle as ‘adjacent’ and ‘opposite’ to a
given angle (@ in figure 1) and call the side opposite the % angle the ‘hypotenuse’. Then we
can define ‘equilateral’ trigonometric functions esin, ecos, and etan by analogy with the sin,
cos, and tan functions.

We can express the e-trigonometric functions in terms of the ordinary trigonometric functions
by using the sine rule and the cosine rule on the 7 triangle. Using o for opposite, a for adjacent,
and A for ‘hypotenuse’ in the % triangle we have, from the sine rule, that

o  h a
sinf  sin(3)  sin(r — % —6)

(1)

(@) | ()

: g
.......... .129" .................... — "§
adjacent
<in 6 = opposite esin 6 = opposite
" hypotenuse " ‘hypotenuse’
cos 0 = adjacent —— adjacent
"~ hypotenuse "~ ‘hypotenuse’
0= opPosﬂe etan 0 — opF)osue
adjacent adjacent

Figure 1 (a) Trigonometry in a right-angled triangle; (b) e-trigonometry in a % triangle.
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The first equality in (1) reduces to

o 23k

sin @ 3
S0
2+/3
esind = -:; = %/-: sin@. (2)

So the esine function is simply proportional to the ordinary sine function (and the constant of
proportionality is not very different from 1).

The second inequality in (1) gives

ecosf = % = Sins(f;%_) %) = % COSGJT%E_ % sin 6 =cosé + ~? sin @, (3)
which we could also write as
ecosf = 23£ sin(G o %)
This time there is the same factor of 23 at the front, so the ecos function has the same

3
amplitude as the esin function, but there is a phase difference of Z-. (This contrasts with the

phase difference of 7 between the sin and cos functions.)
Finally, from (1) we obtain

o
etanf = —
a
sin @
sin(z?” —0)
sin 8

sin(&) cos @ — cos(F) sin

sin &

‘/T§COSG + %sin@

2

O SO = Y 4
1+ +/3coth ‘ @)

The graphs of y =esinf, y = ecos @, and y = etan§ are shown in figure 2.

Notice that the three graphs are coincident at (5 + 2n7w, 1), where 7 is an integer, where
esinf = ecosf = etanf, corresponding to an equilateral triangle in which all three ratios
are 1. This contrasts with the fact that there are no values of 6 for which sin6 = cosf =tan@.

Now using the cosine rule, we have

72 = 0% + 4% - 2a0 cos(%),



100

i
r
i
I
1
r

Figure 2 The graphs of y = esinf, y =ecos¢,and y = etané.

which reduces to k% = 0% + a® — ao. Dividing throughout by 42 gives
(5)

esin® 6 + ecos? § — esin@ ecosf = 1.

Alternatively, we could write
W =0>+a’>—ao= (0 — a)? + ao.

Adding these equations, we obtain 2h% = 0% + a? + (0 — a)? and dividing through by A2 this
time gives
esin’ @ + ecos® 6 + (esinf — ecos§)? = 2.

From (2), we can see that, for small values of @ in radians,
esin@ ~ 3—}’/—59.

From (5), using this approximation for esin §, we have that
ecos> 6 — 3#9 ecosd + (23£0)2 —-1=0,

SO
ecos’0 — 230 ecos6 + 40% — 1 =10.

Completing the square, we have
=0,

(ecos6 — ?9)2 - %02 + %92 -1

) A
(ecosd — -‘{;9)2 =1-—62,

giving ecos§ = Ly + +/1 — 62, taking the positive square root. Expanding the root binomi-

ally, we end up with
" ecosf ~ 14 ?9 - %—92,
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ignoring terms in 8% and above. As a check on our working, we can obtain the same result
more straightforwardly from (3), since

ecos@ = cosf + ?sin@ ~ (1— %92) + ?9,

using the usual small-angle approximations for sin # and cos 6. Interestingly, the version with
the binomial approximation to the square root gives a much better approximation for 6 > %

than the original approximation does,

3
ecosf ~ %9—&—\/1 — 62,

with v
3
ecos§ & 1+ =0 — 167
not leading to huge discrepancies u.ntil 0 is significantly greater than ZT” "

Finally, from (4) when @ is small we have

2 53

= tan @,
3cotd 3

etan @ =~

SO etan @ =~ 2—3‘@ 6. Since 2—‘3—/—3- is fairly close to 1, in fact we are not very far from
esinf ~ etanf ~ sinf ~ tanf ~ 0

anyway.

In a world without right angles we could still do e-trigonometry and solve triangles in a
similar way to the familiar one. We could use a calculator with esin, ecos, and etan buttons (or
e-trigonometry tables) just as easily.
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How good is your algebra?

p=ax®>—1)+2b(x + 1) — 2c(x — 1),
g=b(x*—1)+2c(x+1)—2a(x — 1),
r=c(x®>—1)+2ax+1)—2bkx—1).

What is p? + g2 +r2?
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