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“My old teacher said that 1 was a prime number.”

I have often been told this, and I have little doubt that 
most of these ‘old teachers’ never said any such thing! 
(When my pupils move on from me, I dread to think 
what they tell their new teachers that they think I said!) 
Nevertheless, wherever it came from, the belief that 1 
is a prime number comes up quite a lot in mathematics 
classrooms. In a way, it is quite a reasonable thing to say – 
and may indeed follow logically from pupils’ definitions 
of prime. Definitions vary, but a common one is: ‘A prime 
number is a number whose only factors are 1 and itself.’ 
The phrase ‘1 and itself ’ seems to be the memorable part, 
but it is problematic, because what if ‘itself ’ is 1? Do the 
‘1’ and ‘itself ’ have to be distinct or not? These definitions 
seem to be ambiguous regarding whether 1 should be 
called a prime number or not, which is probably one 
reason why there is a bit of confusion about it.

There are various possible explanations given in mathe-
matics classrooms for why 1 isn’t prime. One approach is 
to regard the number 1 as an exception – mathematical 
statements have exceptions too, and exceptions at 
the beginning of a sequence are somehow a bit more 
respectable than exceptions that occur some way further 
down. So we point out that 1 is a funny number because 
1 × 1 = 1, and we designate it a special case. So we could 
say: ‘A prime number is a number greater than 1 whose 
only factors are 1 and itself.’ But this feels like a bit of 
a fudge, and the ‘greater than 1’ bit is quite likely to 
be forgotten unless there is some discussion of why we 
need to include it. And is it really fair to say that 1 is an 
exception in this context? After all, the number 2 is also 
a kind of exception, being the only even prime, and some 
theorems (for example, ‘All prime numbers are odd’) are 
valid ‘for all primes greater than 2’. Indeed, the Sieve of 
Eratosthenes is based on the idea that every prime p is 
a unique exception to the statement that ‘There are no 
multiples of p among the primes’ (Note 1). (Of course, 
you could say that the problem here is that we count 1 × p  
as a multiple of p.) We happen to have the word ‘even’ for 

multiples of 2, but if we had a word ‘threeven’, let’s say, 
for multiples of 3, then we would be able to say ‘All prime 
numbers greater than three are not threeven’. So perhaps 
1 isn’t any more special than any of the primes.

Another justification that I have heard is that ‘1 is a 
square number, and prime numbers are never square, so 
1 can’t be a prime number.’ What do you think of that? It 
makes me wonder: How do we know that prime numbers 
are never square? It seems to beg the question whether 
1 is prime: certainly prime numbers greater than 1 are 
never square! Another common resolution is: ‘A prime 
number is a number with exactly two (distinct) factors. 
The number 1 has only one factor, so doesn’t have enough 
factors to be a prime number.’ This seems quite clear, and 
an improvement on the ‘1 and itself ’ family of definitions, 
but why should we be so interested in numbers with 
exactly two factors that we give them a special name? 
Why are they more important than, say, numbers with 
exactly three factors? Numbers with exactly three factors 
must be squares of primes, but as far as I know they don’t 
have a special name (Foster, 2016).

Perhaps excluding 1 from the primes is simply an 
example of an arbitrary convention? The community of 
mathematicians collectively decides not to call 1 prime, 
and in another universe they might have done otherwise, so 
we just need to accept it and move on. Indeed, historically 
many mathematicians up to the nineteenth century thought 
of 1 as prime – Henri Lebesgue (1875–1941) is usually said 
to have been the last professional mathematician to call 
1 prime. (The Greeks didn’t regard 1 as prime, but that’s 
because they didn’t regard it as a number at all!)

For me, none of these responses quite gets to the heart 
of why prime numbers are important and why it might 
be a good idea to exclude 1 from them. The importance 
of prime numbers arises from the fundamental theorem of 
arithmetic, the fact that every integer can be expressed 
uniquely (apart from order) as a product of primes. This 
makes primes the multiplicative building blocks of the 
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2. There are really nice visualizations of prime numbers at www.
datapointed.net/visualizations/math/factorization/animated-
diagrams/ and www.ptolemy.co.uk/wp-content/uploads/2009/08/
primitives.swf.
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natural numbers, in a similar way to how in chemistry the 
elements are the building blocks of all the molecules, or 
the 26 letters of our alphabet are the building blocks of 
all the words (Note 2). So the problem with 1 is that if 
we were to include it among the primes it would destroy 
our lovely theorem, because 24 = 1 × 2 × 2 × 2 × 3 =  
1 × 1 × 1 × 2 × 2 × 2 × 3, etc. Unique factorization is very 
useful, so we choose to exclude 1 from the primes because 
we would rather have unique factorization and have to 
make an exception for 1 than keep 1 in with primes but 
have to throw out the property of unique factorization. So, 
looked at this way, the idea that 1 isn’t prime is certainly a 
choice – but a very natural and sensible choice. Since it is a 
choice, we shouldn’t imply to pupils that it is obvious, and 
we shouldn’t make them feel foolish if they struggle with 
this and initially find it counter-intuitive.

Notes

1. For a lesson introducing prime numbers using the Sieve of 
Eratosthenes, see Foster (2015).
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Reprinted Letter and Apology
The March issue carried two letters on 
the subject of Cantorian set theory. The 
letter from Gerry Leversha contained a 
double-printing of the set {1, 2} (page 
34, about 2/3 of the way down column 
3). It should have appeared just once. 
The way in which Richard Bridge’s letter 
was set was fundamentally flawed, with 
expressions and formulas appearing in 
the wrong place. The Editors apologise 
unreservedly to Gerry and to Richard, and 
reprint Richard’s letter below. 

Dear Editors

David Womack seems to reject the 
significance of Cantor’s discovery of a 
hierarchy of infinite cardinal numbers – or 
perhaps even to regard Cantor’s work as 
incorrect. However, he appears to base 
his arguments on a distinction between 
‘complete’ and ‘ongoing’ 1–1 corres-
pondences which I believe is fallacious. 
The 1–1 correspondence between the 
counting numbers and the list of rationals 
in his Figure 1 is ‘complete’ in the sense 
that there is a function which describes 
it. A rational a/b (a < b) will be found 
opposite the natural number 

a + b −1( ) b − 2( )
2

(and the mapping may be inverted with 
slightly greater difficulty).

Similarly, Womack’s Figure 2 lists the 
set of terminating decimal fractions in a 

way which demonstrates their countability. 
The number c/10d appears at position

10
9

10d−1−1( )− d +1+ c.

However, this list excludes any rational 
such as 1/3 whose decimal expansion 
recurs, let alone any irrationals.

Womack claims, correctly, that either 
list may be ‘supplemented’ by a number 
that is missing. If we think in more detail 
about how this supplementation is to take 
place, we uncover the problem with his 
later argument. Let’s call the function for 
the correspondence in Figure 2

n0 c,d( ) ≡ 10
9

10d−1−1( )− d +1+ c.

The list (of all terminating decimals) could 
be ‘supplemented’ by a missing number 
(such as 1/3) by adding it at the start. This 
would require a new 1–1 function n1 (c, d) 
= n0 (c, d) + 1 [together with n1(1/3) =1]. 
However, it is not possible to add 1/3 at 
the end of the list of terminating decimals,  
as this would require n1(1/3) = ℵ0 + 1.  
(ℵ0, ‘aleph null’, is the conventional 
symbol for the countable infinity.) This is 
not a valid expression for a normal 1–1 
function, whether ‘ongoing’ or not. A finite 
number m of numbers could be added at 
the start in the same way, by letting  
n1 (c, d) = n0 (c, d) + m. However, it is not 
possible to add an infinite number of 
numbers at the start, as this would require

n1 (c, d) = n0 (c, d) + ℵ0.

Again, this is not a valid 1–1 function.

Even so, there is a way of adding even 
a countably infinite number of numbers 
to an existing countable list. Let’s call our 
‘staircase’ function for the rationals

m0 a,b( ) ≡ a + b −1( ) b − 2( )
2

.

The idea is to shift all the terminating 
decimals up to the even-numbered 
positions, opening up a (countably) infinite 
number of gaps at the odd-numbered 
positions. The rationals go into these. The 
required function is:

n1 (a, b representing a/b) = 2m0 (a, b) – 1

and 

n1 (c, d representing c/10d) = 2n0 (c, d).

This method is sometimes known as 
Hilbert’s Hotel. It’s not possible to add an 
uncountably infinite number of numbers 
this way, however, as no 1–1 function like 
m0 mapping them to the natural numbers 
can exist (this is what Cantor’s famous 
Diagonal Proof shows).

In summary, Womack’s list of terminating 
decimals is countable and excludes 
uncountably many real numbers. It is not 
possible to ‘supplement’ it with all of these 
while leaving it countable, as Womack 
appears to claim. We do need Cantor’s 
wonderful gift of multiple infinities to do full 
justice to the set of real numbers and the 
concept of the infinite.

Richard Bridges
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