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Colin Foster 

When teaching mathematics, Hewitt (1999; 2001a; 
2001b) advocates telling pupils things that are arbitrary 
(e.g. that there are 360° in a full turn) but cautions 
against telling them things that are mathematically 
necessary (e.g. that the sum of the interior angles of a 
triangle is 180°). The teacher should instead help pupils 
to work out necessary truths for themselves. Simply 
telling them these things as facts, and expecting them 
to take them on trust, risks confusing pupils about the 
nature of mathematical knowledge. One place where it 
is potentially tricky to follow Hewitt’s recommendation 
is in relation to the formulae for volume and surface 
area of 3D solids, which pupils need to be able to work 
with at GCSE before they have had any experience of 
integration, which provides an elegant way to deduce 
them. What do we tell pupils at this stage about where 
these formulae come from? When pupils encounter 
formulae such as 1

3
πr2h for the volume of a cone, how 

might we deal with questions like “Where does the third 
come from?”? (Note 1).

When a pupil asked this question in my class, another 
pupil responded by making a link to the formula for the 
area of a triangle:

 area of a triangle = 1

2  × base × height,

 volume of a pyramid = 1

3  × base area × height.

He said that in two dimensions, for area, the fraction 
is 1

2 , so in three dimensions, for volume, the fraction 
“must be” 1

3 . I was interested that this response seemed 
to satisfy the pupil who asked the question, who found 
this answer very logical. But when I asked, “Why 
should the number of dimensions be the denominator 
in the fraction?” no one could answer that. Although 
calculus would give some insight here, for the pupils 
it seemed to be an ‘explanation’ at the level of pattern 
spotting – perhaps a useful way to remember the 
fraction, but for me not really an explanation. This 
reminded me of another occasion, in a different class, 
when a pupil asked why the surface area of a sphere is 
4πr2 rather than 3πr2, which seemed logical to him, as 
when you look at a sphere you see a circle of area πr2, 
and you can look at it from three different ‘dimensions’, 
making a total surface area of 3πr2. He wanted to know 
where the fourth πr2 came from (Note 2). Both of these 
connections with ‘dimensions’ suggest that pupils are 
eager to make sense of what they are told and want to 
understand why.

It can often be difficult to find age-appropriate 
explanations for mathematical results. Is it sometimes 
reasonable to ask pupils to wait until they have studied 
more mathematics before giving an answer? That can 
feel like a cop-out, especially as these formulae were 
known many centuries before calculus as we know it 
was formally invented. However, it could be argued 
that having some unresolved issues is motivating for 
learning more mathematics. Why bother learning more 
and more mathematics unless it enables you to make 
sense of problems that you couldn’t (or were harder) 
before? But not all pupils will go on to study calculus, 
and I want the subject to make sense for pupils, in some 
way, at every stage of their learning. So I am motivated 
to try to find ways of understanding these formulae, 
even if they fall short of rigorous proofs. I like to believe 
that there is always a good way to deal with any enquiry 
based on what the pupil currently knows, but sometimes 
this can be challenging!

The first thing to notice could be that πr2h (without the 1

3 ) 
would be the volume of a cylinder of radius r and height 
h, and that a cone with the same radius and height clearly 
takes up less space than the corresponding cylinder, 
so multiplying by a fraction less than 1 seems like a 
sensible thing to be doing (Figure 1). Can you see by 
looking at the cone beside (or inside) the cylinder that 
the cone is less than half the volume of the cylinder? 
Perhaps – but certainly not that it is precisely one third 
of it.

Figure 1

One approach is to begin with pyramids rather than 
cones. It is plausible that the volume of a pyramid 
will be proportional to its base area and to its height. 
Shearing a pyramid – moving its apex parallel to the 
base – doesn’t change its volume. So to justify that 
doubling the base area will double the volume, you can 
imagine two identical square-based pyramids side by 
side and then shear them so that they fuse together to 
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make one larger pyramid with the same height but twice 
the base area and twice the volume (Figure 2). Each 
horizontal slice of the new pyramid has an area that is 
the sum of the areas of the slices at the same height in 
the initial pyramids. So the volume must have doubled.

Likewise, slicing the two starting pyramids into lots 
of horizontal pieces, and taking slices alternately from 
each pyramid, would result in a pyramid with the same 
base area but twice the height – and clearly twice the 
volume (Figure 3). So it is plausible that

volume of pyramid ∝ base area × height,

but what is the constant of proportionality?

One way to justify that the constant of proportionality k 
is 1

3  is to ask pupils to make six identical square-based 
pyramids that will fit together to make a cube with their 
apexes meeting at the centre of the cube (Note 3). If you 
say that you want the net of each pyramid to fit onto one 
sheet of A4 paper then pupils initially have to decide 
on a sensible size for the base of the pyramid: a 6 cm 
by 6 cm square base is reasonable. Then pupils need to 
use Pythagoras’ theorem to work out the height of the 
isosceles triangles needed for the sloping sides of the 
pyramid ( 3 2  cm), so that the final pyramid will have 
a height of 3 cm (Figure 4). That way six of them, with 
their apexes meeting, will form a cube, the six bases of 
the pyramids forming the six faces of the cube. Pupils 
can work in groups of three to draw two of these nets 
each, accurately, and then cut them out and glue them to 
make six identical pyramids. These should fit together 
exactly to make a cube.

(For a full-size accurate version of this net go to  
www.foster77.co.uk/Net%20for%20a%20square-
based%20pyramid.pdf.)

This isn’t rigorous unless we really justify why the 
pyramids form a cube without any tiny gaps, but it is 
highly suggestive. If we let the sides of the cube have 
unit length, so that the cube has unit volume, then each 
of the six pyramids must have a volume of 1

6 . We know 
that the base area of each pyramid is 12 = 1, and the 
height is 1

2 , so 1

6  = 1

2 k, meaning that k must be 1

3 .

Now if we see a cone as a ‘circular-based pyramid’, 
having an n-gon base in the limit as n tends to infinity, 
then it is reasonable to see the formula 1

3 πr2h as a special 
case of the formula for the volume of a pyramid, where 
the base area for a circular base is πr2 (Note 4). So we 
have the volume of a pyramid and a cone.
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By contrast with all this work, the surface area of a cone is 
much easier. We can split the curved surface area into lots 
of isosceles triangles with their bases on the circumference 
of the circular base and their apexes at the apex of the 
cone (Figure 5). Each of these triangles has a tiny base b  
and a height equal to the slant height l (not the vertical 
height h) of the cone. Then the formula 1

2  base × height 
gives the area of each little triangle as 1

2 bl, and, when we 
add up all of these, the b’s will add up to the circumference 
of the base, which is 2πr, so we get the curved surface 
area as 1

2 (2πrl) = πrl.

Now all we have left to prove are the formulae for the 
volume and surface area of a sphere (Note 5). Perkins 
(2004) bases his demonstration on Archimedes’ proof, 
which uses Cavalieri’s principle which, putting it 
informally, states (in the 3D version) that if two shapes 
standing next to each other have equal cross-sections at 
every level, then they have the same volume. So we look 
at the cylinder, the double cone and the sphere shown in 
Figure 6. At every height h above or below the central 
horizontal plane, the shaded cross-sectional area of 
the double cone is πh2, and the shaded cross-sectional 
area of the sphere is, using Pythagoras’ theorem,  
π(r2 – h2). The sum of these is πr2, which is the shaded 
cross-sectional area of the cylinder. Since this is true in 
every horizontal plane, it follows that the volume of the 
cylinder must be equal to the volume of the double cone 
plus the volume of the sphere. So:

Volume of sphere 

Now we know the volume of a sphere, we can find its 
surface area quite easily. We just imagine the sphere 
to be made up of a large number of slender pyramids, 
of height r and small base area a, with all their apexes 
meeting at the centre (one pyramid is shown in Figure 
7 – enlarged for clarity).

Each little pyramid will have volume 
1

3 ar, and when we 
add them all up we will obtain 1

3 Ar, where A is the total 
surface area of the sphere.

So 1

3 Ar = 4

3 πr3, meaning that A = 4πr2 (Note 6).

So we have some kind of justification for all of the volume 
and surface area formulae needed at GCSE. It’s not the 
last word on any of this, but at least it gives pupils a sense 
that these formulae don’t just appear from nowhere, and 
that there is something here requiring explanation. It 
also prepares the way for more advanced treatments  
later.
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Notes

1.  In the new specification for the mathematics 
GCSE subject content (DfE, 2013), the formulae 
for volume and curved surface area of a cone, and 
volume and surface area of a sphere, come under 
the category of: “Formulae that candidates should 
be able to use, but need not memorize. These can be 
given in the exam, either in the relevant question, 
or in a list from which candidates select and apply 
as appropriate.” (p. 16) By contrast, the formulae 
for the circle must be memorized. Formula posters 
are available at www.cambridge.org/ukschools/
files/3614/1503/1226/GCSE_Maths_Formulae_
Infographic_PDF_Download_.pdf.

2.  In fact 3πr2 is the surface area of a solid hemisphere, 
which has a curved surface area of 2πr2 and a plane 
base area of πr2.

3.  Alternatively, you can construct three congruent 
square-based pyramids which fit together to make 
a cube, but this is harder to visualize: see http://
korthalsaltes.com/model.php?name_en=three+ 
pyramids+that+form+a+cube.

4.  For a different approach to the original question, 
see Rowland (2012).

5.  Strictly speaking (some would say), a sphere is a 
two-dimensional surface, and therefore has zero 
volume! The three-dimensional space contained 
within a sphere can be described as a ball. This is 
similar to the distinction between a circle (a one-
dimensional curve) and a disc (a two-dimensional 
surface), so perhaps ‘the area of a circle’ should 
be ‘the area of a disc’? For more on these kinds of 
ambiguities, see Foster (2011).

6.  For a nice discussion of the fact that the surface 
area of a sphere is the derivative of the volume, just 
as the circumference of a circle is the derivative of 
the area, see Zazkis, Sinitsky & Leikin (2013).
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