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Mathematics educators have been publishing their work in international research 
journals for nearly 5 decades. How has the field developed over this period? We 
analyzed the full text of all articles published in Educational Studies in Mathematics 
and the Journal for Research in Mathematics Education since their foundation. Using 
Lakatos’s (1978) notion of a research programme, we focus on the field’s changing 
theoretical orientations and pay particular attention to the relative prominence of the 
experimental psychology, constructivist, and sociocultural programmes. We quanti-
tatively assess the extent of the “social turn,” observe that the field is currently expe-
riencing a period of theoretical diversity, and identify and discuss the “experimental 
cliff,” a period during which experimental investigations migrated away from math-
ematics education journals.
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Research on mathematical thinking and learning has a long history, but it is 
reasonable to suggest that the field of mathematics education research started a 
new phase in 1968. It was in this year that Educational Studies in Mathematics 
(ESM) published its first issue, and 2 years later, in 1970, the Journal for Research 
in Mathematics Education (JRME) followed suit (Kilpatrick, 1992). Accepting 
1968 as a starting date for the modern research field implies that mathematics 
educators have been publishing research in international journals for nearly half 
a century. How has the field changed during this period? Our goal in this article 
is to answer this question by reporting on a study in which we analyzed the full 
text of all articles published by ESM and JRME since their founding. This approach 
allowed us to identify the main theories, methods, and domains that mathematics 
education researchers have focused on over the last 5 decades and how their rela-
tive prominence has changed during this period.

Unsurprisingly, there have been several earlier characterizations of the develop-
ment of mathematics education as a research field. For example, Hanna and Sidoli 
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(2002) celebrated the 50th volume of ESM by conducting a statistical analysis of 
the keywords assigned to ESM articles in the ERIC bibliometric database. They 
found that the research community’s interest in geometry and space had declined 
since the 1970s and that its interest in problem solving peaked during the 1980s. 
Using internal ESM data used to assign reviewers to papers, Hanna and Sidoli also 
established that there had been a growth in the number of papers that focused on 
social issues in the teaching and learning of mathematics. This finding echoed 
Lerman, Xu, and Tsatsaroni’s (2002) more detailed analysis of papers published 
during the 1990s. Lerman et al. analyzed a sample of papers published in ESM from 
1990 to 2001 and found a substantial increase in the proportion that used social 
theories. In the first half of the decade, social approaches were present in 9% of 
papers compared with 34% in the second half. Tsatsaroni, Lerman, and Xu (2003) 
later extended this analysis to papers published in JRME and the Proceedings of 
the International Group for the Psychology of Mathematics Education (PME), 
finding similar results. It was this data set that led Lerman (2000) to claim that 
during the 1990s, there had been a “social turn in mathematics education research.” 
He argued that the decade had seen a shift in focus from the cognitive to the social: 
from theories that focus on individuals’ thought processes to “theories that see 
meaning, thinking, and reasoning as products of social activity” (p. 23).

Lerman’s (2000) description of the social turn proved extremely influential. 
Wagner (2015) argued that by giving the social turn a name, Lerman described 
the phenomenon but also helped shape it. One sign of Lerman’s influence is that 
other researchers have adopted his language to advocate for other changes in the 
discipline. For instance, Gutiérrez (2013) suggested that mathematics education 
should make a “sociopolitical turn” and include a greater focus on issues of social 
justice and equity. However, unlike Lerman and the social turn, Gutiérrez was not 
claiming that mathematics education research had already gone through a socio-
political turn; rather, she adopted Lerman’s language to argue that it should.

Despite the significance of Lerman’s characterization of the social turn, some 
have questioned whether it continued through the 2000s. For example, based on 
their personal impressions of presentations at PME conferences, Gates and 
Jorgensen (2015) maintained that the social turn is absent from much of the math-
ematics education research literature. Similarly, Jablonka and Bergsten (2010) 
hypothesized that the trend Lerman identified may not have continued beyond the 
period he studied. Quantitatively assessing the extent of the social turn is one goal 
of the study reported in this article.

Alongside Lerman et al.’s (2002) and Hanna and Sidoli’s (2002) contributions, there 
have been numerous other attempts to empirically map shifts in mathematics educa-
tion research (e.g., Sierpinska & Kilpatrick, 1998). Largely, these have focused on 
particular topics such as gender, class, and race (Chassapis, 2002; Lubienski & 
Bowen, 2000); particular theories (e.g., Pais & Valero, 2012); or particular geograph-
ical regions (e.g., Boero & Szendrei, 1998; Lai & Loo, 1992; Schoenfeld, 2016). These 
papers have typically analyzed database keywords (e.g., Chassapis, 2002; Lubienski 
& Bowen, 2000), reported interviews with leading researchers (e.g., Kieran, 1994), 
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given personal introspective accounts of their impressions of changes in the field (e.g., 
J. W. Wilson, 1994), or offered historical accounts (e.g., Kilpatrick, 1992, 2014).

Here, we offer a broader analysis of changes in mathematics education research 
over the past 5 decades. Rather than focusing on particular topics, time periods, 
or geographical areas, we analyzed the full text of all articles published in ESM 
and JRME since their inception 5 decades ago. Using this inclusive approach, we 
were able to identify the key topics that mathematics education researchers have 
focused on since 1968 and track how these topics have changed over time. Before 
presenting our method and results, we first situate our work using Lakatos’s (1978) 
methodology of scientific research programmes.1

Theory Change: The Methodology of Scientific Research Programmes
How do academic disciplines make progress? Philosophers of science have 

proposed a variety of accounts, including Popper’s (1959) theory of progress 
through falsification and Kuhn’s (1962) suggestion that progress occurs through 
periods of normal science being punctuated by rapid paradigm shifts. Here we 
situate our work theoretically using Lakatos’s (1978) notion of a scientific research 
programme, which can be seen as a modification of Kuhn’s account (Larvor, 1998). 
Whereas Kuhn felt that different research approaches—paradigms, in his 
language—were incommensurate, Lakatos argued that this view implied that there 
are no rational methods by which one can choose between different paradigms 
and, therefore, that scientific progress was “a matter for mob psychology” (p. 91). 
He saw his methodology of scientific research programmes as being a means by 
which to maintain Popper’s belief that science is a rational process while retaining 
Kuhn’s much greater fidelity to history (Larvor, 1998).

The main idea in Lakatos’s (1978) account is that the base descriptive unit of 
research is not, as Popper (1959) argued, an individual research hypothesis or even 
an individual theory but rather a research programme. Such a programme is, in 
Lakatos’s sense, a historically connected series of theories that all share the same 
“hard core”: a collection of key assumptions and beliefs accepted by those who 
work within the programme. For instance, the hard core of the Newtonian research 
programme included the notion of gravitational action at a distance together with 
Newton’s laws of motion. The hard core is the programme’s defining character-
istic: It must be defended against falsification because if the hard core were to be 
modified, the programme itself would have been abandoned.

Research programmes often encounter difficulties in the form of anomalous 
empirical observations. Indeed, Lakatos (1978) said that programmes “grow in a 
permanent ocean of anomalies” (p. 6). He proposed that they deal with these in 
one of two ways. Often, anomalies are simply ignored: If the programme is 
successfully achieving its goals, researchers may simply treat anomalies as open 
questions to be dealt with later. Alternatively, the programme may use what 
Lakatos called a “protective belt.” This consists of a large collection of auxiliary 

1 As is traditional when discussing Lakatos’s work, we use the British spelling of programme.
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hypotheses that supplement the hard core and that can be used to prevent it from 
being falsified. The protective belt, unlike the hard core, can be modified or aban-
doned without doing serious damage to the programme. When some empirical 
anomaly—a potential challenge to the programme’s hard core—is observed, a 
modification is made to the protective belt. This allows the hard core to survive 
intact and the programme to continue. To illustrate this idea, Lakatos gave the 
example of a scientist observing a planet moving in a fashion inconsistent with 
Newton’s laws. Rather than abandoning the hard core of the Newtonian research 
programme, the scientist would examine hypotheses from the protective belt, 
perhaps by changing his or her assumptions about atmospheric refraction or even 
by proposing an as-yet-unobserved planet (Linton, 2004). What the scientist 
certainly would not do is abandon his or her beliefs in the hard core.

The third component of a research programme is its “heuristic,” the collection 
of methods and problem-solving techniques that researchers within the programme 
use to make progress. For instance, the Newtonian research programme’s heuristic 
involved modeling empirical observations and making predictions using a set of 
sophisticated mathematical techniques. The heuristic is tied to the programme, 
and it is not always straightforward to separate a programme’s hard core from its 
heuristic. Indeed, Lakatos (1978) suggested that this distinction could in some 
cases merely be “a matter of convention” (p. 181). For example, the measurement 
of response times is an important part of the heuristic of the cognitive psychology 
research programme, but this is because of assumptions from the programme’s 
hard core (the temporal nature of information processing).

Using the notions of the hard core, protective belt, and heuristic, Lakatos (1978) 
attempted to explain scientific progress and theory change by considering a disci-
pline as a collection of competing programmes. He distinguished between two 
types of research programme. “Progressing” programmes are those that regularly 
generate surprising new results and research directions. Such programmes may 
be so successful that they can legitimately ignore anomalies, or they may deal with 
anomalies by modifying their protective belts in such a way that their heuristics 
are able to use the modifications to productively generate more new results. In 
contrast, a “degenerating” programme rarely makes novel discoveries or predic-
tions and dedicates its protective belt to the post hoc accommodation of anomalous 
observations. Lakatos suggested that research programmes are abandoned when 
researchers give up trying to accommodate anomalies into a degenerating research 
programme and instead join a rival programme that is progressing.

In our discussion, we talk, as did Lakatos, about “science” and “scientific” 
research programmes. However, it is clear that Lakatos intended his ideas to apply 
to disciplines beyond the hard sciences. Indeed, he used his account to analyze the 
weaknesses of both Marxism and Freudianism (Lakatos, 1978), and others have 
applied his ideas to educational and psychological research (e.g., Dienes, 2008; 
Gilbert & Swift, 1985; Inglis, 2015; Taber, 2007).

Research programmes can be considered at different levels. Indeed, Lakatos 
(1978) pointed out that “even science as a whole can be regarded as a huge research 
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programme with Popper’s supreme heuristic rule: ‘devise conjectures which have 
more empirical content than their predecessors’” (Lakatos, 1978, p. 47). However, 
more commonly, an academic discipline is seen as consisting of several rival 
research programmes that compete for researchers’ attention by attempting to 
demonstrate that they are progressing (Gillies, 2007; Larvor, 1998). It is this latter 
use to which we put Lakatos’s notion in this article. Although Lakatos emphasized 
the role of competition between theories, he intended this to be a constructive form 
of competition in which each programme is spurred to progress as a result of chal-
lenges from rival programmes. Lakatos even suggested that individual researchers 
could work within more than one research programme in order to expedite this 
process (Lakatos, 1978, p. 112).

Lakatos (1978) argued for the accuracy of his way of thinking about scientific 
progress by analyzing episodes from history (e.g., Niels Bohr’s work on light 
emission). His method was to produce what he called “rational reconstructions” 
of how ideas developed, with historical details and the biographies of those 
involved relegated to footnotes (Larvor, 1998). The aim of such a reconstruction 
is to provide “a rational explanation of the growth of objective knowledge,” not to 
offer a detailed historical account (Lakatos, 1970, p. 91). We note that some aspects 
of Lakatos’s methodology of scientific research programmes have been criticized, 
primarily by Feyerabend (1981, 1993), and toward the end of the article, we argue 
that these criticisms are not relevant to our use of Lakatos’s work.

Our goal in the next section is to demonstrate that Lakatos’s ideas provide a 
helpful structure within which to understand the development of mathematics 
education research. To this end, we offer a rational reconstruction of the social 
turn identified by Lerman (2000).

The Social Turn in Mathematics Education: A Rational Reconstruction
Our goal in this section is to offer a sketch of how existing accounts of the social 

turn in mathematics education research (e.g., Clements & Ellerton, 1996; Lerman, 
2000; Lerman, Xu, & Tsatsaroni, 2002; Mousley, 2015; Sakonidis, 2015) can be 
reinterpreted in terms of Lakatos’s (1978) methodology of scientific research 
programmes. To this end, we offer a brief rational reconstruction of the social turn. 
We begin in the 1980s, a period during which constructivism was the dominant 
research programme in mathematics education. We first describe its hard core, 
heuristic, and protective belt.

The constructivist research programme in mathematics education developed out 
of Piaget’s (1952) work on child development. A key assumption that made up the 
hard core was that knowledge construction is an individual process designed to 
maximize one’s ability to make sense of the world. Individuals receive sensory input, 
filter it, and then actively organize it into mental schemas. Learning takes place 
when learners construct new knowledge by creating new schemas or reorganizing 
existing schemas. Knowledge is not passively received; it is actively created by the 
individual (e.g., Cobb, Yackel, & Wood, 1988; Noddings, 1990; Thompson, 2014; 
von Glasersfeld, 1990).
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The constructivist heuristic also originated in Piaget’s (1952) work. It empha-
sized careful study of how students make sense of new mathematical ideas, typi-
cally using clinical interviews in which participants were asked to orally reflect 
on their thought processes (e.g., Ginsburg, 1981; Swanson, Schwartz, Ginsburg, 
& Kossan, 1981). As befitted the programme’s emphasis on individuals’ construc-
tions of personal schemas, clinical interviews were almost always conducted with 
a single participant who was typically observed making sense of a previously 
unseen open-ended mathematical task.

Various flavors of constructivism were developed, including von Glasersfeld’s 
(1990) brand of radical constructivism. Radical constructivists were comfortable 
with the programme’s hard core and its focus on individual sense making but went 
further by emphasizing that the goal of constructing schemas is merely to organize 
the individual’s experience of the world and not to discover an objective external 
reality (e.g., von Glasersfeld, 1991). One way of interpreting these additional 
assumptions of radical constructivism is to see them as part of constructivism’s 
protective belt. By adopting the radical position advocated by von Glasersfeld, a 
constructivist mathematics educator could avoid conflicts with the new fallibilist 
philosophies of mathematics that had been interpreted as denying the existence 
of objective mathematical knowledge (e.g., P. J. Davis & Hersh, 1980; Kitcher, 
1983; Lakatos, 1976). However, the radical perspective was not part of the 
constructivist hard core. One could be what von Glasersfeld (1990) called a “trivial 
constructivist” and still happily endorse the constructivist hard core and heuristic.

By the end of the 1980s, the radical version of the constructivist research 
programme was dominant in mathematics education (R. B. Davis, 1990), but its 
emphasis on individual knowledge construction had difficulty accounting for 
several findings that seemed to suggest that learning had an important social 
component. For example, Lave (1988) found that adults’ arithmetic strategies 
seemed to be contingent on the social setting in which they were performed. She 
found that although adults appeared to make few arithmetic errors when shopping 
for groceries, they performed relatively poorly on paper-and-pencil tests of arith-
metic (but see Greiffenhagen & Sharrock, 2008, for an alternative interpretation). 
Similarly, Carraher (1988) found that children performed quite differently when 
conducting mathematics in school and “in the street.” Further evidence that math-
ematical thinking was contingent on social factors came from Walkerdine’s (1988, 
1989) finding that negative attitudes toward, and lower attainment in, mathematics 
seemed to be more common in socially disadvantaged children and girls. These 
and other similar observations can be seen as a challenging anomaly to the 
constructivist research programme. How could the programme, for which the hard 
core and heuristic emphasized individual activity, deal with research findings that 
appeared to show that mathematical thinking and learning could not be fully 
understood without considering social contexts?

The notion of social constructivism (Ernest, 1991) that, following Vygotsky (1978),  
emphasized the role of social settings, history, and culture in forming individual 
knowledge can be seen as a rescue hypothesis that was added to constructivism’s 
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protective belt to defend the programme against anomalies of the sort reported by 
Lave (1988), Carraher (1988), and Walkerdine (1988, 1989). Indeed, Mousley 
(2015) described social constructivism as “a compromise position” (p. 154) 
designed to explain “how the notion of individual cognition could remain viable 
in the context of social group interaction” (pp. 154–155). Although the role of 
social interaction in learning was emphasized by social constructivists, using 
constructs such as taken-as-shared knowledge, the construction of knowledge was 
still a fundamentally individual pursuit. The constructivist hard core remained.

As discussed earlier, Lakatos (1978) saw the addition of the rescue hypotheses 
as being a route through which we are able to judge whether a programme is 
progressing or degenerating. What did the social constructivist rescue hypothesis 
reveal about the constructivist programme? Opinions differed. Drawing on wider 
debates within the social sciences (for a review, see Bruner, 1996), Lerman (1996) 
argued that it created an internal contradiction. In Lakatos’s terms, Lerman was 
suggesting that constructivism was a degenerating programme. His point was 
simple. If knowledge was constructed by individuals through an idiosyncratic 
internal process, how could knowledge become shared—and known to be 
shared—within social groups? In other words, how could constructivism, with its 
focus on individual knowledge, explain intersubjectivity? He directly critiqued 
the social constructivist rescue hypothesis: “I suggest that the extension of radical 
constructivism toward a social constructivism, in an attempt to incorporate inter-
subjectivity, leads to an incoherent theory of learning” (p. 133). Lerman was 
arguing that the rescue hypothesis was incompatible with the constructivist hard 
core and that the research programme was degenerating to such an extent that it 
should be discarded: “Mathematics education would benefit from abandoning 
constructivism as a view of how people learn” (p. 133).

As well as arguing that the constructivist programme should be abandoned, 
Lerman (1996) also discussed the research programme that he felt should replace 
it. Although constructivism’s hard core emphasized that knowledge is constructed 
by individuals, the sociocultural research programme supported by Lerman 
instead had a hard core that assumed that thinking, reasoning, and knowledge 
were all products of social activity. Vygotsky (1986) characterized the distinction: 
“In our conception, the true direction of the development of thinking is not from 
the individual to the social, but from the social to the individual” (Vygotsky, 1986, 
p. 36). Clearly, this difference in the hard core also led to a substantially different 
heuristic. If thinking is constituted in social interactions, then the individual 
clinical interview is not likely to be a suitable way to study thinking. Instead, the 
sociocultural research programme’s heuristic included a much greater emphasis 
on observations of classroom discourse (e.g., Goos, Galbraith, & Renshaw, 2002).

As Lakatos would have predicted, Lerman’s (1996) argument was rejected by 
those who wished to defend the constructivist research programme (e.g., Steffe & 
Thompson, 2000), and they continued to conduct and publish constructivist 
research that was widely read (e.g., Steffe & Ulrich, 2014; Thompson, 2014). 
However, when Lerman (2000) claimed that there had been a “social turn in 
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mathematics education research,” he was asserting that the sociocultural research 
programme was growing—in terms of the number of researchers and its influ-
ence—at the expense of the constructivist research programme. As discussed 
above, Lerman based this claim on analyzing a sample of research papers from 
the 1990s (Lerman et al., 2002). The extent to which the social turn continued 
through the 2000s is a matter of debate (e.g., Gates & Jorgensen, 2015; Jablonka 
& Bergsten, 2010).

Topic Modeling as a Method
The social turn is an example of theory change in which a research programme 

was apparently abandoned by a subset of its followers. However, Lakatos’s notion 
of a research programme indicates that there are other ways in which programmes 
can develop. For instance, their domain of applicability might shift (the content being 
studied could change) or they might modify their heuristic (the main methods that 
they use could develop). To fully understand how the discipline of mathematics 
education has changed since ESM and JRME began publishing, we require a method 
that allows developments in the hard core, heuristic, and domain content to be iden-
tified. In this section, we introduce topic modeling, a method that allows such 
developments to be identified through the analysis of the language used in 
research papers.

The rationale for our use of a linguistic approach is that a research programme’s 
hard core, its heuristic, and the domain content that it is used to analyze all have 
characteristic linguistic features. For instance, we would expect a research paper 
that reports a constructivist analysis of geometry learning to contain words such as 
triangle, circle, and angle but also words such as schema, constructivism, 
and interaction.

Topic modeling is a computational method designed to summarize large collec-
tions of texts by a small number of conceptually connected topics or themes (Blei, 
Ng, & Jordan, 2003; Grimmer & Stewart, 2013). The aim is to discover the main 
themes that are present in a large unstructured collection of documents by analyzing 
the patterns with which words co-occur. One way of understanding topic modeling 
is to imagine how documents could be created from a preexisting set of topics. A 
topic is defined by a probability distribution over words. So, in one topic, the word 
angle would have a high weighting, and in another, it would have a low weighting, 
and similarly for schema, triangle, and so on. We can imagine creating a document 
by selecting a distribution over topics. For instance, a given document might be 
composed of 40% of words from Topic 1, 15% from Topic 2, 0% from Topic 3, and 
so on. Given this setup, documents of a given length can be created simply by 
selecting words from the topics with the appropriate frequency. For instance, every 
time a word is selected for our document, there would be a 40% chance of it coming 
from Topic 1, and within Topic 1, there would be some chance of it being angle, some 
chance of it being triangle, and so on. This method uses the so-called “bag of words” 
model of text, which dramatically simplifies language by ignoring both word order 
and “stop words” (words such as the and a that are topic independent).
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Topic modeling can be thought of as carrying out this text construction process 
in reverse. The method starts with the documents, assumes that they were 
constructed via this process, and identifies which topics would be most likely to 
have produced them. Topic modeling is a computationally demanding task that relies 
on latent Dirichlet allocation algorithms that identify the topics that best fit the 
documents (Blei et al., 2003). The method is somewhat analogous to a quantitative 
version of grounded theory; there are no preconceived ideas about the topics that 
will emerge, and individual words are tagged with codes that identify the topics with 
which they are associated. Once the modeling process has occurred, we can study 
the composition of each document. For instance, we may discover that Document 
10 is made up of 4% Topic 1 words, 60% Topic 2 words, and so on.

One difficulty with the topic-modeling approach is that one must specify in 
advance the number of topics the algorithm should find. By so doing, the 
researcher can determine the granularity of the analysis. One method to decide on 
a suitable number of topics is to assess how well the topic model fits the texts using 
a measure known as perplexity. The lower the perplexity of a model with a given 
number of topics, the better the model’s fit (Blei et al., 2003). Perplexity is calcu-
lated by fitting a topic model to a subset of the texts and then assessing its fit on 
the remaining texts. This process is repeated for models with different numbers 
of topics. It is always possible to reduce the perplexity of a topic model by 
increasing the number of topics, but, at some point, the gain in fit will be offset 
by the increased difficulty of interpreting the larger number of topics. Jacobi, van 
Atteveldt, and Welbers (2016) proposed that the number of topics to retain should 
be assessed using a method analogous to Cattell’s (1966) scree test in the context 
of factor analyses. By calculating the perplexity of models with different numbers 
of topics, one can assess if there is a point at which the reduction in perplexity 
appears to “level off.” But Jacobi et al. emphasized that as with factor analyses, 
one major criterion for selecting the number of topics when producing a topic 
model is the interpretability of the resulting topics.

The topic-modeling approach has several advantages over traditional approaches 
to studying a field’s historical development. First, the approach is extremely inclu-
sive. It would be unrealistic for a researcher to read and analyze every ESM and 
JRME paper ever published, but the topic-modeling approach can take account of 
this number of texts, implying that important historical trends are unlikely to be 
missed. Second, the approach is relatively neutral; because the analysis is conducted 
algorithmically, it does not prioritize one historical trend over another. However, 
this neutrality comes at a cost. The results of our analysis are purely descriptive; the 
topic-modeling method identifies phenomena that must then be interpreted, a task 
that we attempt later in the article. Naturally, these interpretations are more subjec-
tive and open to criticism than the topic-modeling analysis itself.

Identifying the Topics
In the nearly 5 decades since publication of the first issues of ESM and JRME, 

the two journals have established themselves as the leading international venues 



471Matthew Inglis and Colin Foster

for research in mathematics education. Indeed, in 2012, a project by the European 
Mathematics Society and the European Society for Research in Mathematics found 
that ESM and JRME were the only two journals given the highest possible quality 
rating by at least two thirds of the expert mathematics educators sampled (Toerner 
& Arzarello, 2012). Consistent findings were reported by Nivens and Otten (2017) 
and Williams and Leatham (2017). We therefore focused our analysis on ESM and 
JRME, but we highlight that this does restrict our conclusions to English-language 
mathematics education research.

We downloaded every “article” published between 1968 and 2015 by ESM and 
JRME from the journals’ websites. These articles included everything published 
within the journals and stored as PDF files on the websites, including research 
papers, editorials, book reviews, and calls for papers. These PDF files were 
converted to plain text using ABBYY FineReader OCR Pro (Version 12.1.4), and 
“noncontent,” such as copyright statements or watermarks, was removed. Our 
final data set consisted of 1,933 files (9.49 million words) from JRME and 2,062 
files (14.48 million words) from ESM.

We used MALLET (Version 2.0.8RC2), a UNIX command-line topic-modeling 
tool (McCallum, 2002), to calculate possible topic models. We first removed all 
the “stop words”—very common English words, such as the, is, and a, that would 
not be topic specific—on MALLET’s default list. Inspection of the perplexity 
graph (discussed above), shown in Figure 1, suggested that 35 topics seemed to be 
a reasonable choice, and an inspection of the topic models generated by different 
numbers of topics suggested that the overall message from the data did not seem 
to be sensitive to varying the number of topics slightly.

We interpreted each topic that the algorithm identified using two different 
approaches. We first studied the words that were highly characteristic of each topic 
(in the sense that, when a word from this topic was inserted into a new document 
during our counterfactual document creation process, these highly characteristic 
words had a high probability of being selected). For instance, the words with the 
highest probabilities in the first topic identified by the algorithm were proof, 
proofs, mathematics, mathematical, reasoning, argument, students, arguments, 
statement, deductive, and proving. From this, it seemed clear that this topic is 
concerned with proof and argumentation, and we gave it the name “proof and 
argumentation.” Second, for each topic, we studied those papers that had particu-
larly high proportions of included words. For instance, the paper with the highest 
proportion of words from the “proof and argumentation” topic (64% excluding 
stop words) was Weber’s (2008) article about how mathematicians validate proofs. 
By studying these papers, we were able to further understand the nature of the 
topics, which contributed to our choice of names.

Some of the topics were not related to the content of research. For instance, four 
topics were concerned with journal administration (e.g., announcements of special 
issues, advice to prospective authors, or lists of editorial board members), and 
another three consisted of non-English words (ESM has published articles in both 
French and German). Clearly, articles written in French tend to have more 
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linguistic similarity to each other than to those written in English, regardless of 
their academic content. We do not discuss these topics further, although it would 
be worthwhile to establish whether similar topics emerge from an analogous study 
of non-English language mathematics education research.

The remaining 28 topics were assigned names based on their defining words 
and the nature of the papers that had particularly high proportions of words from 
them. The topic names, together with each topic’s characteristic words and the 
paper with the highest proportion of words from each topic, are shown in Table 1. 
To enable readers to better understand these 28 topics, we have listed the 10 papers 
with the highest proportions of words from each topic in a spreadsheet available 
at https://doi.org/10.6084/m9.figshare.4877429.

We make several remarks about Table 1. First, readers will have noticed that 
some words define more than one topic (e.g., group). This highlights one advantage 
of topic modeling. When the word group appears near the words set, elements, and 
operation, it is likely to have a different meaning from when it appears near the 
words treatment, experimental, pretest, and posttest.

Second, although it was straightforward to identify most of the topics by 
studying their characteristic words and their most representative papers, in other 
cases, this was not clear. Here, we briefly justify our characterizations for those 
topics where this may not be obvious.

Papers made up of particularly high proportions of words from the “teaching 
approaches” topic typically reported on discussions or evaluations of particular 
classroom teaching strategies. For example, Leikin and Zaslavsky’s (1997) inves-
tigation of student interactions in small-group settings had a high proportion of 
words from this topic, as did Brookhart, Andolina, Zuza, and Furman’s (2004) 
discussion of student self-assessment.

The common theme among papers that had high proportions of words from the 
“didactical theories” topic was that they used or discussed theories from the  

Figure 1. The perplexity of topic models with varying numbers of topics. The dashed 
lines show our interpretation of where the graph “levels off.”
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Table 1
The 28 Topics, Each With the Words That Best Characterize Them (in Order of Probability) 
and the Paper With the Highest Proportion of Words

Topic name 
(ordered 

alphabetically)
Characteristic words  

(top 20)

Paper with the highest 
proportion of words 

from the topic
Addition and 
subtraction

children number children’s 
addition counting subtraction 
strategies child numbers strategy 
arithmetic problems mental task 
count facts instruction 
development tasks ten

The development of 
counting strategies for 
single-digit addition 
(Baroody, 1987)

Analysis function concept limit definition 
calculus numbers number 
students negative infinite 
sequence mathematical infinity 
image formal process functions 
derivative point points

An empirical study of 
students’ understanding of a 
logical structure in the 
definition of limit via the 
ε-strip activity (Roh, 2010)

Constructivism mathematics learning 
mathematical knowledge 
development cognitive theory 
education activity research 
process understanding processes 
social individual press concepts 
view conceptual construction

Interaction or 
intersubjectivity? A reply to 
Lerman (Steffe & 
Thompson, 2000)

Curriculum 
(especially 
reform)

mathematics curriculum school 
achievement students teachers 
student national textbooks 
standards grade high assessment 
schools content level curricula 
reform data textbook

The impact of prior 
mathematics achievement on 
the relationship between 
high school mathematics 
curricula and postsecondary 
mathematics performance, 
course-taking, and 
persistence (Post et al., 2010)

Didactical 
theories

mathematical knowledge students 
teacher theoretical activity 
process teaching analysis research 
mathematics situations situation 
didactic didactical classroom 
springer case learning context

Introduction teaching 
situations as object of 
research: Empirical studies 
within theoretical 
perspectives (Laborde & 
Perrin-Glorian, 2005)

Discussions, 
reflections, and 
essays

question time make fact point part 
questions process made problem 
case view important kind work 
sense situation answer find paper

Letter to the editor (Roberts, 
2001)

Dynamic 
geometry and 
visualization

geometry visual figure spatial 
triangle angle geometric angles 
task logo diagram diagrams 
properties shapes triangles shape 
level van sides tasks

Facility with plane shapes: A 
multifaceted skill (Warren & 
English, 1995)
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Topic name 
(ordered 

alphabetically)
Characteristic words  

(top 20)

Paper with the highest 
proportion of words 

from the topic
Equity mathematics education school 

American cultural countries 
students social Chinese schools 
culture teachers African equity 
children educational 
ethnomathematics country 
Japanese parents

Attention deficit disorder? 
(Silver, 2003)

Euclidean 
geometry

geometry line point points figure 
circle plane lines geometrical 
angle triangle space straight 
parallel geometric fig figures 
theorem segment Euclidean

Inversive geometry (Coxeter, 
1971)

Experimental 
designs

test study group scores research 
items table mathematics tests 
significant results groups 
variables analysis treatment 
ability performance item journal 
experimental

Interactions between 
structure-of-intellect factors 
and two methods of 
presenting concepts of 
modulus seven arithmetic: A 
follow-up and refinement 
study (Behr & Eastman, 
1975)

Formal analyses set concept number numbers 
elements concepts structure sets 
group order operations examples 
model operation relation system 
properties element relations 
objects

Checker games in 
operational systems as 
media for an inductive 
approach to teaching algebra 
(Steiner & Kaufman, 1969)

Gender mathematics differences 
achievement girls gender boys 
anxiety attitudes sex school 
performance study research high 
females ability educational 
factors motivation males

Gender differences in a 
psychological model of 
mathematics achievement 
(Ethington, 1992)

History and 
obituaries

mathematics mathematical 
education book teaching history 
chapter mathematicians science 
university theory problems school 
historical geometry ideas 
curriculum educational 
development work

The epos of Euclidean 
geometry in Greek 
secondary education (1836–
1985): Pressure for change 
and resistance (Toumasis, 
1990)

Mathematics 
education around 
the world

pupils mathematics school 
teaching learning schools year 
work level education secondary 
teachers teacher mathematical 
project pupil years primary 
children educational

Change in mathematics 
education since the late 
1950’s—Ideas and 
realisation West Indies (B. J. 
Wilson, 1978)
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Topic name 
(ordered 

alphabetically)
Characteristic words  

(top 20)

Paper with the highest 
proportion of words 

from the topic
Multilingual 
learners

language mathematics English 
text reading writing mathematical 
word words texts linguistic 
languages learners bilingual 
learning written discourse 
meaning classrooms read

Using two languages when 
learning mathematics 
(Moschkovich, 2007)

Novel assessment tasks task assessment 
mathematical students 
mathematics modelling 
knowledge model cognitive 
competence results models level 
solutions quality performance 
springer information study

Modes of modelling 
assessment—A literature 
review (Frejd, 2013)

Observations of 
classroom 
discussion

teacher classroom mathematical 
discourse interaction discussion 
analysis episode activity class 
learning interactions group social 
ideas talk work participation 
thinking it’s

Mathematical micro-
identities: Moment-to-
moment positioning and 
learning in a fourth-grade 
classroom (Wood, 2013)

Problem solving problem problems solving 
solution solve mathematical 
problem-solving strategies word 
solutions information model 
strategy solved processes 
structure study process table 
correct

Recall of mathematical 
problem information: 
Solving related problems 
(Silver, 1981)

Proof and 
argumentation

proof proofs mathematics 
mathematical reasoning argument 
students arguments statement 
deductive proving examples 
number true mathematicians 
theorem statements prove logical 
argumentation

How mathematicians 
determine if an argument is 
a valid proof (Weber, 2008)

Quantitative 
assessment of 
reasoning

correct items errors reasoning 
item responses answer number 
table subjects answers 
proportional grade incorrect ratio 
intuitive numbers error response 
type

The development of 
proportional reasoning and 
the ratio concept Part I—
Differentiation of stages 
(Noelting, 1980)

Rational numbers fractions number fraction division 
numbers unit multiplication 
rational parts decimal units 
knowledge understanding 
fractional pieces operations 
partitioning part scheme 
multiplicative

Michael’s fraction schemes 
(Saenz-Ludlow, 1994)
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Topic name 
(ordered 

alphabetically)
Characteristic words  

(top 20)

Paper with the highest 
proportion of words 

from the topic
School algebra algebra algebraic equation 

function equations functions 
graph students graphs expressions 
representations expression 
computer variable arithmetic 
linear symbolic values 
understanding representation

Evolution of a teaching 
approach for beginning 
algebra (Banerjee & 
Subramaniam, 2012)

Semiotics and 
embodied 
cognition

mathematical objects semiotic 
gestures signs meaning object 
sign gesture fig language 
mathematics radford activity 
springer hand space line body 
metaphor

Grounded blends and 
mathematical gesture 
spaces: Developing 
mathematical 
understandings via gestures 
(Yoon, Thomas & Dreyfus, 
2011)

Sociocultural 
theory

mathematics education social 
school practices practice work 
mathematical knowledge research 
identity cultural activity power 
learning context discourse people 
theory everyday

Symbolising the real of 
mathematics education 
(Pais, 2015)

Spatial reasoning length area unit figure reasoning 
units rate number measurement 
pattern height change time 
measure relationship quantities 
cubes volume generalization 
distance

Fifth graders’ enumeration 
of cubes in 3D arrays: 
Conceptual progress in an 
inquiry-based classroom 
(Battista, 1999)

Statistics and 
probability

probability data sample statistics 
statistical reasoning chance 
average sampling distribution 
dice thinking outcomes responses 
grade level probabilistic variation 
events population

A framework for assessing 
and nurturing young 
children’s thinking in 
probability (Jones, Langrall, 
Thornton, & Mogill, 1997)

Teachers’ 
knowledge and 
beliefs

teachers teacher mathematics 
teaching knowledge beliefs lesson 
classroom learning content 
practice mathematical education 
professional student thinking 
lessons school preservice 
instruction

Preservice teachers’ sources 
of decisions in teaching 
secondary mathematics 
(Bush, 1986)

Teaching 
approaches

students student class group 
mathematics school time study 
questions groups work level 
classes year problems asked 
learning instruction high 
activities

Teacher benefits from using 
impromptu writing prompts 
in algebra classes (Miller, 
1992)
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continental European tradition, such as Chevallard’s (1999) anthropological 
theory of didactics (ATD) or Brousseau’s (2006) theory of didactical situations 
(TDS). For instance, Barbé, Bosch, Espinoza, and Gascón’s (2005) analysis, using 
ATD, of the teaching of functions in Spanish high schools had a high proportion 
of words from this topic. As would be expected, as well as having many words 
from the “didactical theories” topic, this paper also had a high proportion from 
the “analysis” topic.

Papers that had high proportions of words from the “experimental designs” 
topic typically used experimental designs with random allocation of participants 
to conditions. Of the 10 papers with the highest proportions of words from this 
topic, nine used random allocation at the participant level to investigate a variety 
of different research questions.

Papers that had high proportions of words from the “quantitative assessment 
of reasoning” topic typically used large samples to document reasoning behavior. 
The majority of the 10 papers with the highest proportions of words from this 
topic investigated aspects of proportional reasoning, but there was also a survey 
of responses to the Wason selection task (Adi, Karplus, & Lawson, 1980) and an 
investigation of adults’ reasoning about natural numbers (Vamvakoussi, Van 
Dooren, & Verschaffel, 2013).

All the papers with high proportions of words from the “sociocultural theory” 
topic used social theories to analyze aspects of mathematics learning. Indeed, 
two of the papers with the highest proportions from this topic were from a special 
issue titled “Social Theory and Research in Mathematics Education” (Morgan, 
2014; Pais & Valero, 2014).

Of the 10 papers with the highest proportion of words from the “construc-
tivism” topic, seven were authored by Cobb or Steffe (e.g., Cobb, Yackel, & Wood, 
1992; Steffe & Kieren, 1994), and the remaining papers either used, discussed, 
or critiqued constructivist approaches to mathematics education.

Papers with high numbers of words from the “formal analyses” topic consisted 
of attempts to provide formal mathematical analyses of educational tasks or 
theories. For instance, Wittmann’s (1973) attempt to provide an algebraic model 
of an aspect of Piagetian theory had a large proportion of words from this topic.

Finally, there was a topic—“discussions, reflections, and essays”—that seemed 
to represent reflective, nonempirical discussions of various issues. Papers that 
had high proportions of words from this topic often discussed meta-level research 
issues. Examples included letters to the editor, a discussion of citation practices 
in mathematics education (Leatham, 2015), and various editorials (e.g., Williams, 
2007).

Finally, we attempted to verify that our interpretations of the topics were 
reasonable by studying the linear combinations of “topic proportions” for partic-
ularly highly cited papers from each journal. For instance, our topic model 
suggested that Tall and Vinner’s (1981) paper on students’ concept images of 
limits and continuity was mostly made up of the “analysis” topic (which provided 
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54% of the paper’s words2) and the “discussions, reflections, and essays” topic (24% 
of the paper’s words). Similarly, the model suggested that Yackel and Cobb’s (1996) 
paper, which introduced the notion of sociomathematical norms, was largely made 
up of the “observations of classroom discussion” (42%) and “constructivism” (27%) 
topics. Both of these results seemed consistent with the content of the respective papers.

Changes Over Time
To look at how the prominence of each topic has changed over time, we used the 

linear combinations of topic proportions to calculate the mean proportion of words 
from each topic published by each journal in each year. For example, we took the 
proportion of words from the “proof and argumentation” topic in every paper published 
by ESM in 2015 and calculated the mean. This revealed that, normalized by paper 
length, 2.7% of the words published in ESM in 2015 were related to proof and argu-
mentation. We did the same for JRME (0.22%) and for every year in our sample. We 
then calculated similar figures for the other 27 topics. This allowed us to track the 
extent to which each topic has been present in the two journals over the last 5 decades.

To help organize our discussion, we further classified our topics into five broad 
categories. Recall that Lakatos (1978) suggested that academic disciplines develop 
through the competition of research programmes, which can be characterized by their 
heuristics and hard cores (and, to a lesser extent, their protective belts). As we noted 
earlier, this means that there are at least two ways of tracking the development of an 
academic discipline. One is to consider the relative prominence of topics related to 
research programmes’ heuristics and hard cores; a second is to look at the substantive 
content to which the research programmes have been applied. We therefore categorized 
each of our topics as being primarily related to a research programme’s hard core, a 
research programme’s heuristic, or substantive domain content. Because mathematics 
education research covers a broad range of content, to help structure our discussion, 
we further divided the domain content topics into three subcategories relating to 
“mathematical content,” “mathematical processes,” and “teachers and learning envi-
ronments.”

As discussed above, Lakatos (1978) himself accepted that the distinction between 
a programme’s hard core and heuristic is sometimes a matter of convention, so this 
distinction is necessarily subjective. In contrast, we found it relatively straightforward 
to identify those topics related to mathematical content, mathematical processes, and 
teachers and learning environments. One ambiguity came from the “quantitative 
assessment of reasoning” topic, which seemed to be related to both a heuristic (large-
scale surveys) and a mathematical process (reasoning). For the purposes of the discus-
sion and figures that follow, we categorized this topic as being related to mathematical 
processes. Similarly, the “history and obituaries” topic seemed not easily to fit within 
one of our three domain content subcategories; in the discussion and figures below, 
we have included it within the “teachers and learning environments” section.

2 For the remainder of the article, when we cite the percentage or proportion of words from a 
particular topic, we are excluding stop words (particularly common words such as the, it, or a) from 
the denominator.
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Our discussion of these changes over time is organized into two main sections. 
First, by considering the topics categorized as “mathematical content,” “mathemat-
ical processes,” and “teachers and learning environments,” we consider how the 
prominence of different research foci has changed in the last 5 decades. Second, we 
discuss the changing theoretical perspectives adopted by ESM and JRME authors 
by considering topics related to the hard cores and heuristics of different 
research programmes.

Changes in Domain Content
Figures 2, 3, and 4 show the changes in mean topic proportions per year for topics 

related to the “mathematical content,” “mathematical processes,” and “teachers and 
learning environments” subcategories, respectively. The points on these graphs 
show the mean proportion of words from each paper published during the given year 
that were from the given topic. In each figure, graphs are ordered according to posi-
tive correlations between year and mean topic proportion (taking the average for 
each journal), with the highest at the top. For instance, the correlations between the 
mean topic proportions and year for the “school algebra” topic (shown at the top of 
Figure 2) were r = +.49 for ESM and r = +.60 for JRME, whereas the equivalent 
correlations for the “Euclidean geometry” topic (shown at the bottom of Figure 2) 
were r = –.61 for ESM and r = –.44 for JRME.

We make several remarks about these figures, first concerning those topics related 
to mathematical content. Figure 2 shows that there has been a substantial decline in 
interest in Euclidean geometry since the 1970s. This has especially been the case in 
ESM, which devoted a great deal of attention to this topic in its early years. However, 
the fall in prominence of Euclidean geometry in JRME has also been substantial but 
is somewhat disguised by the scale on the vertical axis (the correlations between 
year and topic proportion were r = –.61 and r = –.44 for ESM and JRME, respec-
tively). In contrast, both “school algebra” and “analysis” have received gradually 
increasing levels of interest, whereas the extent to which “rational numbers” and 
“statistics and probability” have been discussed has not substantially changed since 
the 1970s. The “addition and subtraction” topic shows a peak of interest during the 
1980s, but the two journals have apparently devoted less attention to it in recent years.

Two of the “mathematical processes” topics, shown in Figure 3, also show peaks 
during the 1980s. There seems to have been somewhat more interest in problem 
solving during that decade than there is today, and the same is true for the “quanti-
tative assessment of reasoning” topic, especially in JRME. The “proof and argumen-
tation” topic seems to have steadily increased in prominence since 2000, but the 
remaining “mathematical processes” topics show no strong trends.

Several topics related to teaching and learning environments, shown in Figure 4, 
have received an increasing level of interest over the past 5 decades. The most 
notable is the increased focus on teacher knowledge and beliefs, which has become 
steadily more prominent in both journals since the 1980s, perhaps following 
Shulman’s (1986) influential work. The “curriculum (especially reform)” topic has 
also grown in prominence since 1990; perhaps unsurprisingly, given NCTM’s 
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involvement in curriculum reform efforts, the bulk of this increase has been in 
JRME. Similarly, in recent years, there appears to have been an increased focus 
on designing and evaluating novel assessment methods in both journals.

There is also a group of topics shown in Figure 4 that have not shown substantial 
changes in the extent to which they have been discussed. The “multilingual 
learners,” “teaching approaches,” “equity,” and “history and obituaries” topics all 
fall into this group. The “gender” topic shows a notable peak: ESM published 
almost no articles with words from this topic until the late 1970s, a situation that 
changed substantially during the 1980s. Since that decade, however, both ESM 
and JRME appear to have published fewer articles focused on gender. Finally, 
discussions of “mathematics education around the world” appear to have become 
less of a priority than they once were.

Changes in Research Programmes
Figure 5 shows changes in prominence over time for those topics categorized 

as being related either to a research programme’s hard core or to its heuristic. 

Figure 2. The mean proportion of words (excluding stop words) from “mathematical 
content” topics published by each journal per year. Lines show cubics of best fit. Note that 
because these graphs are designed to show within-topic changes over time, they have 
different y-axis scales.
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Again, the graphs are ordered by the strength of the correlation between year and 
mean topic proportion. In the sections that follow, we discuss the three main trends 
that can be seen in these figures. First, we consider the social turn as identified by 
Lerman (1996). Second, we identify and discuss the increased level of theoretical 
diversity seen in the discipline since the late 1990s. Finally, we examine the 
dramatic decline in experimental methods seen since the 1970s.

Before proceeding to discuss these three issues, we briefly note two other trends. 
First, the prominence of the “formal analyses” topic has declined significantly 
since the 1970s. In articles published by ESM in the 1970s, between 10% and 20% 
of words were from this topic, which relates to formal mathematical analyses of 
educational theories or situations. In contrast, very few researchers since the mid-
1980s appear to have adopted this heuristic. The identification of the existence, 
and subsequent decline, of this “formal analyses” topic—which appears not to be 
widely commented on in existing historical accounts of the field’s development—
gives some credibility to our earlier suggestion that the inclusive nature of the 
topic-modeling approach allows us to identify trends that other methods may miss. 
Second, we note that the “discussions, reflections, and essays” topic has shown a 
steady decline in prominence in ESM. In contrast, JRME seems to have maintained 
a steady—but lower—rate of publication of words from this topic.

Figure 3. The mean proportion of words (excluding stop words) from “mathematical 
processes” topics published by each journal per year. Lines show cubics of best fit. Note 
that because these graphs are designed to show within-topic changes over time, they 
have different y-axis scales.
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Figure 4. The mean proportion of words (excluding stop words) from “teaching and 
learning environments” topics published by each journal per year. Lines show cubics of 
best fit. Note that because these graphs are designed to show within-topic changes over 
time, they have different y-axis scales.
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Figure 5. The mean proportion of words (excluding stop words) from the eight hard-core 
and heuristic topics published by each journal per year. Lines show cubics of best fit. 
Note that because these graphs are designed to show within-topic changes over time, 
they have different y-axis scales.
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The social turn. Earlier in the article, we offered a rational reconstruction of the 
social turn in which we suggested that the emergence of the sociocultural research 
programme in the 1990s was in reaction to what Lerman (1996) considered to be a 
degenerating constructivist programme. By Lerman’s account, if the social turn 
had become embedded into the mainstream mathematics education literature at 
the expense of the constructivist programme, then over time we would have 
expected to have seen a gradual increase in prominence of the “sociocultural 
theory” topic and a gradual decrease in prominence of the “constructivism” topic.

This is precisely what our data show. Figure 6 shows the proportions of words 
from each topic by year collapsed across journals. The “constructivism” topic 
shows a large peak of interest from the late 1980s to mid-1990s before declining 
in prominence from the late 1990s onwards. At around the same time that the 
field’s interest in constructivism declined, the proportion of words from the “socio-
cultural theory” topic began to increase and is now at a roughly similar level to 
that of the “constructivism” topic at its peak (when it was widely seen as domi-
nating mathematics education research). The field’s interest in constructivism is 
now at the low levels seen in the 1970s. Although some have questioned the extent 
to which the social turn represents a lasting change to the discipline (e.g., Gates 
& Jorgensen, 2015; Jablonka & Bergsten, 2010), this analysis suggests that it was 
a significant development, which has had lasting consequences.

Although the sociocultural and constructivism hard cores are distinct, it is 
notable that the sociocultural research programme shares a similar heuristic to the 
social branch of the constructivist programme, namely, a focus on observing 
classroom interactions. Indeed, this heuristic change—from individual clinical 
interviews to observations of interactions—is one way of characterizing the shift 
from radical constructivism to social constructivism. Given this, it is perhaps 
unsurprising to see that Figure 5 shows a complementary steady increase in the 
proportion of words coming from the “observations of classroom discussion” topic 
since the 1990s. This trend started at around the time that social constructivism 
was identified by Ernest (1991) and has continued through the social turn.

Figure 6. The social turn. The mean proportion of words from the “sociocultural” and 
“constructivist” topics by year collapsed across journals. Lines are cubics of best fit.
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Theoretical diversification. “Sociocultural theory” is not the only topic from 
the hard core and heuristic category that has seen a substantial increase in prom-
inence since 2000. Both the “semiotics and embodied cognition” and the “didac-
tical theories” topics have shown a similar development over the same period, 
particularly in ESM. We might, therefore, characterize mathematics education as 
currently being in a phase of theoretical diversity in which many research 
programmes are competing for researchers’ attention.

Notably, both the “semiotics and embodied cognition” and “didactical theories” 
topics cover multiple research programmes. Although both the semiotics and the 
embodied cognition research programmes have hard cores that emphasize the 
importance of noncognitive factors to mathematical thinking, they differ in where 
their emphasis is placed. Semioticians focus on the roles of signs and symbols in 
mathematical thought (e.g., Presmeg, Radford, Roth, & Kadunz, 2016), whereas 
embodied cognition researchers focus on the role of the body outside of the brain 
(e.g., Núñez, Edwards, & Matos, 1999). Of course, some researchers conceptualize 
certain aspects of bodily movement—gestures or gazes, for instance—as being 
signifying acts (e.g., Radford, 2003; Roth, 2012), which provides a natural link 
between the two research programmes and which may explain why “semiotics and 
embodied cognition” emerged as one topic. Similarly, at least two research 
programmes are contained within our “didactical theories” topic: the ATD of 
Chevallard (1999) and the TDS of Brousseau (2006). Therefore, if anything, our 
analysis underestimates the extent to which the field has diversified.

This theoretical diversification has been noted before (e.g., Bikner-Ahsbahs & 
Prediger, 2010; Sriraman & English, 2005). Whereas some researchers have argued 
that a diversity of theoretical approaches is valuable for allowing multiple perspec-
tives to be brought to the same phenomena (e.g., Reid & Knipping, 2010; Simon, 
2009), others have highlighted dangers. For instance, Dreyfus (2006) complained 
that mathematics educators “tend to invent theories, or at least theoretical ideas, at 
a pace faster than we produce data to possibly refute our theories” (p. 78).

Dreyfus’s (2006) argument can be interpreted within Lakatos’s (1978) frame-
work. Recall that Lakatos suggested that progress in an academic discipline comes 
about when research programmes compete for researchers’ attention. One way of 
assessing a programme is by considering how it incorporates anomalies into its 
protective belt. Those programmes that are progressing will eventually attract 
more attention than those that are degenerating. Therefore, a degree of programme 
diversity is a sign of a maturing academic discipline, as long as these programmes 
are challenging each other for researchers’ attention by identifying anomalies and 
evaluating the resulting modifications to protective belts. Via this process, 
researchers can decide whether a particular programme is progressing or degen-
erating and allocate their attention accordingly. As long as this process occurs, 
some programme diversity is a strength (cf. Cobb, 2007). However, if, as Dreyfus 
presumably felt, not all programmes in mathematics education are regularly chal-
lenged in this way, this may lead to a lack of progress.
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One attempt to deal with the field’s recent theoretical diversity, and concerns 
about a lack of anomalies, is to “network theories” (e.g., Bikner-Ahsbahs & 
Prediger, 2010; Kidron, Lenfant, Bikner-Ahsbahs, Artigue, & Dreyfus, 2008). 
Through this process, researchers attempt to understand, synthesize, and perhaps 
even unify different theoretical approaches. The aim is to find connections as far 
as is possible and useful but not further than that. Whether complete unification 
is possible would seem to turn on whether different theoretical approaches are 
genuinely different programmes, in the sense that they have incompatible hard 
cores, or whether they have similar hard cores that, for historical reasons, are 
merely expressed using different terminology. In other words, these networking 
attempts could be a helpful method of determining whether or not different theo-
retical approaches are genuinely different research programmes.

Regardless of whether unification is possible, Lakatos (1978) emphasized that 
understanding and engaging with different research programmes is likely to 
contribute to identifying and evaluating anomalies. Although it is possible to 
identify anomalies from within a research programme, Lakatos wrote that “it is 
only constructive criticism which, with the help of rival research programmes, 
can achieve real success” (p. 92) and that “the sooner competition starts, the better 
for progress” (p. 69). Feyerabend (1985, 1993) also emphasized the advantages 
that accrue to a field that has multiple competing research programmes: “The best 
criticism is provided by those theories which can replace the rivals they have 
removed” (Feyerabend, 1985, p. 110). The social turn provides an example of this: 
Lerman’s (1996) critique of social constructivism was heavily informed by his 
knowledge of sociocultural theory, the rival programme.

The experimental cliff. Although the social turn was an important development 
in the history of mathematics education research, it is not the most striking trend 
seen in our data. During the 1970s, the “experimental methods” topic was domi-
nant to an extent not seen in any other topic during any subsequent period. Indeed, 
between 30% and 40% of words published in JRME in the 1970s were from this 
topic. Although this trend is most striking in JRME, a similar pattern can be seen 
in ESM. The correlations between the topic’s proportion and year are r = –.86 for 
JRME and r = –.63 for ESM. Across both journals, the mean proportion of words 
in each paper from the “experimental methods” topic was 22% in the 1970s, 10% 
in the 1980s, 3% in the 1990s, 1.7% in the 2000s, and 1.5% in the 2010s. We refer 
to this development as the “experimental cliff.”

It is notable that there appears to have been no recent upturn in the prominence 
of this topic despite educational policymakers actively trying to encourage, 
through targeted funding initiatives, the use of experimental designs in education 
research. For instance, the U.S. Department of Education’s Strategic Plan 2002–
2007 set an explicit target, stating that 75% of funded projects that address causal 
questions should use randomized experimental designs (U.S. Department of 
Education, 2002), and, in 2011, the UK government created a large new source of 
educational research funding, the Education Endowment Foundation, that was 
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required to fund only randomized experimental designs. These official encourage-
ments have yet to have any effect on the frequency with which experimental 
designs appear in ESM or JRME.

Experimental designs are a subset of quantitative research methods. Although 
the “experimental designs” topic has substantially decreased in prominence, it is 
notable that we did not identify a “qualitative research methods” topic showing an 
upward trend of a similar magnitude. Our explanation for this observation is that 
articles that report qualitative methods tend to be more linguistically diverse than 
those that report quantitative methods. Consistent with this suggestion, although 
we found no unified topic focused on qualitative methods, we did find topics 
concerned with classroom discourse, sociocultural theory, semiotics and embodied 
cognition, and didactical theories. All of these topics reflect research programmes 
that typically (but not exclusively) use qualitative research methods, and all have 
shown increases since the 1970s.

Our discussion of the experimental cliff falls into four main sections. First, we 
characterize the research programme most closely identified with the experi-
mental method, which, following Cobb (2007), we refer to as “experimental 
psychology.” Second, drawing on contemporary sources, we consider reasons for 
this trend. Third, we report a bibliometric analysis of the fate of the experimental 
psychology programme and conclude that it is in good health, albeit absent from 
the mathematics education literature. Finally, we draw on Lakatos’s (1978) account 
to reflect on the possible implications of this absence of experimental work for 
progress in the field.

Which research programmes in mathematics education are most closely associ-
ated with the experimental method? Different authors have used different termi-
nology. Thompson (1982), for instance, contrasted constructivism with what he 
called “environmentalism.” He characterized this latter research programme as 
being focused on understanding mathematics learning through the experimental 
manipulation of the environment rather than, as a constructivist would, the consid-
eration of students’ internal mental constructions. Thus, environmentalists would 
typically try to see how some manipulation of the environment affected student 
or teacher behavior. Cobb (2007) offered a similar characterization but referred 
to the research programme as “experimental psychology,” contrasting it with 
“cognitive psychology,” a term he used to describe what we have been calling 
constructivism. Clements and Ellerton (1996) used different terminology again, 
referring to the research programme as “the ‘scientific’ approach,” and Kilpatrick 
(1992), following Begle (1969), used the term “experimental science.”

Here we refer to this research programme using the term “experimental 
psychology” and characterize it as having the aim of testing or generating theories 
of human behavior, typically by manipulating experimental stimuli in ways 
designed to reveal underlying psychological processes or associations (e.g., Mook, 
1983). These processes could be cognitive in nature, social in nature, develop-
mental in nature, or simply behavioral. Because of the large range of psychological 
processes that can be and are studied using experimental methods, we believe that 
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Cobb’s (2007) use of the term “cognitive psychology” to refer to constructivism 
is misleading. Most cognitive psychologists would consider their research area to 
be the subset of experimental psychology that focuses on understanding internal 
cognitive processes rather than other types of behavior. Support for this assertion 
comes from the observation that journals such as the Quarterly Journal of 
Experimental Psychology or the Journal of Experimental Psychology: General 
publish many cognitive studies (and from the observation that journals such as 
Cognition or Cognitive Psychology publish few constructivist studies).

If we understand the experimental cliff in mathematics education to be a 
dramatic move away from the experimental psychology research programme and 
toward the constructivist research programme, what was behind it? Kilpatrick 
(1992) pointed out that some researchers at the time felt that mathematics education 
research was not successfully influencing educational practice and suggested that 
this encouraged the exploration of alternatives. Clements and Ellerton (1996) attrib-
uted the change to two main factors. First, they argued that doubts had begun to 
form regarding the validity of null hypothesis significance testing, a critical part of 
the experimental method (e.g., Carver, 1978; Menon, 1993).3 Second, and what is 
more important, they suggested that there was a reaction against the dominance of 
the experimental psychology research programme and a desire for more diverse 
approaches to be permitted. Clements and Ellerton went as far as describing exper-
imental psychology as “a straitjacket” (p. 74) from which mathematics education 
research had to emerge.

A great deal of discussion of this latter point took place in the pages of JRME 
during 1977–1979. Following a series of letters to JRME that debated the merits of 
experimental and nonexperimental research (Aiken, 1977; Fennema, 1978; 
Rappaport, 1977; Scott, 1977; Shaughnessy, 1978; Steffe, 1978; Wheeler, 1978), 
Lester and Kerr (1979) wrote a position statement that explicitly argued for greater 
methodological diversity. In a series of recommendations, they suggested that math-
ematics education doctoral students should be trained in both experimental methods 
and nonexperimental methods, such as clinical interviewing and the analysis of 
verbal protocols required to conduct constructivist research; that JRME must be 
willing to publish both experimental and nonexperimental research; and that 
researchers should openly debate their recommendation for an increase in the diver-
sity of research programmes accepted in the field.

The experimental cliff shown in Figure 5 indicates that Lester and Kerr’s (1979) 
call for nonexperimental work to become more acceptable was remarkably successful 
but at the cost of their call for methodological diversity. Rather than the constructivist 

3 From a contemporary perspective, several of the critiques offered by these authors seem mis-
placed. For instance, Clements and Ellerton (1996) were incorrect to state that “almost any study 
can be made to show significant results if a sufficiently large sample is used” (p. 80): This would 
only be the case for designs in which participants are not randomly allocated into groups. Further-
more, recent research on the relationship between p values and Bayes factors indicates that it is an 
exaggeration to say that p values reveal “nothing” about the truth of the null hypothesis (e.g., Held, 
2010; Sellke, Bayarri, & Berger, 2001).
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research programme becoming an accepted approach alongside the experimental 
psychology programme, as Lester and Kerr were advocating, it replaced it.

However, we do not believe that the experimental psychology research programme 
degenerated to the point where it was abandoned entirely. Our impression is that 
there is a thriving research community conducting psychological research on math-
ematics learning using experimental methods; indeed, we have contributed to some 
of this work (e.g., Alcock et al., 2016). One indication of the current health of the 
experimental psychology programme, as it pertains to the learning of mathematics, 
is the recent foundation of the Journal of Numerical Cognition, the official journal 
of the Mathematical Cognition and Learning Society (Towse, 2015).

To empirically test our hypothesis that the experimental psychology research 
programme has continued to actively investigate mathematics learning, albeit only 
outside of mathematics education journals, we conducted an analysis of publications 
using the Scopus bibliographic database. Our goal was to identify trends in the 
quantity of published research on mathematics learning from the experimental 
psychology research programme outside of the mathematics education literature.

We searched for all psychology articles that contained the words experiment or 
experimental in any field and that contained learning and either mathematical or 
numerical in the abstract or title. Because Scopus includes the mathematics educa-
tion journals Mathematical Thinking and Learning and Journal of Mathematical 
Behavior in its psychology category, we excluded these from our search.4 We calcu-
lated the number of articles per year that met these criteria alongside the total number 
of experimental psychology articles published each year (psychology articles that 
included experiment or experimental in any field, excluding the two mathematics 
education journals that Scopus includes in the psychology category). This allowed 
us to estimate the proportion of experimental psychology articles published per year 
that focused on mathematics learning.5 These proportions are plotted in Figure 7 
(right axis), alongside the “experimental methods” topic proportions by year 
collapsed across both ESM and JRME (left axis). We have plotted the number of 
experimental psychology papers on mathematics learning as a percentage of the 
total number of experimental psychology papers published, which yields a relatively 
low percentage, but in absolute terms, the number of papers that met our (fairly 
restricted) search term was relatively large (89 in 2015 compared with the 72 articles 
published in ESM and JRME in that year).

4 Our formal Scopus search term was ((TITLE-ABS(mathematical OR numerical) AND 
TITLE-ABS(learning) AND SUBJAREA(psyc)) AND ALL(experimental OR experiment) 
AND (EXCLUDE(EXACTSRCTITLE,”Journal Of Mathematical Behavior”) OR EXCLUDE 
(EXACTSRCTITLE,”Mathematical Thinking And Learning”))).

5 The results reported in this section are robust to minor variations in these search terms. For 
instance, a similar pattern is found when searching for articles from sources that have the words 
psychology or cognitive in their title rather than the psychology subject area; when removing the 
experiment or experimental criterion; or when searching for articles with education rather than 
learning in the title, abstract, keywords, and so on. Similarly, consistent results are obtained if 
Mathematical Thinking and Learning and the Journal of Mathematical Behavior are included in 
the psychology category.
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Figure 7 indicates that over the same period in which the proportion of experi-
mental psychology work published in ESM and JRME has been falling, the propor-
tion of experimental work in general psychology journals that focuses on mathe-
matics learning has been rising. Given this, perhaps the term “experimental 
migration” might be a more accurate characterization of what we have called the 
experimental cliff. In sum, there appears to be a great deal of research being 
conducted on mathematics learning within the experimental psychology research 
programme, but little of this work is being published in the two leading mathematics 
education research journals. From the perspective of Lakatos’s (1978) methodology 
of scientific research programmes, we argue that this situation is highly suboptimal.

As we have discussed, according to Lakatos’s account, competition between 
programmes is an effective method of driving scientific progress. This commonly 
happens when anomalies are identified that challenge the hard cores of established 
research programmes, and the programmes react by incorporating rescue hypoth-
eses into their protective belts. Evaluating these rescue hypotheses gives one way 
for researchers to decide whether a programme is progressing or degenerating. 
Lakatos (1978) and Feyerabend (1985, 1993) both believed that the most effective 
challenges to research programmes come from the perspective of a rival 
programme. If this belief is correct,6 then knowledge of multiple programmes 
would be helpful for progression in the field. For instance, the anomalies that led 
to the social challenge to constructivism (Carraher, 1988; Lave, 1988; Walkerdine, 
1988) were highly visible in the mathematics education community. Indeed, 
Carraher’s (1988) work was presented as a plenary at the annual PME conference 

6  Recall that Kuhn (1962) felt that different research programmes are incommensurate, so he 
would have rejected this argument. In contrast, Lakatos (1978) argued that scientific progress is 
more than “a matter for mob psychology” (p. 91).

Figure 7. The experimental cliff. Trends over time for (a) the proportion of words from 
the “experimental methods” topic (collapsed across ESM and JRME), shown on the left 
axis, and (b) estimates of the proportion of experimental psychology articles that focus 
on mathematics learning, shown on the right axis. Lines are cubics of best fit.
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in 1988. If this work had remained isolated from mathematics education researchers, 
perhaps few would have appreciated the seriousness of the anomaly posed to the 
constructivist programme.

However, assuming that researchers primarily read articles from journals in 
which they also publish, then publishing work from different research programmes 
in disjoint sets of outlets is likely to be a substantial barrier to the development of 
this knowledge. Specifically, if knowledge of the experimental psychology 
research programme is to be developed among mathematics education researchers, 
then either some experimental psychology research must be published in mathe-
matics education journals, or mathematics education researchers must make a 
concerted effort to read journals from outside the discipline. Equally, it is hard to 
see how experimental psychology researchers will develop knowledge of, say, the 
sociocultural programme unless research from this tradition is published in the 
journals that they primarily read or unless they widen the range of journals that 
they typically read.

What kinds of anomalies might be identified if there were more interactions 
between the research programmes? Here we give two indicative examples. Some 
work in the experimental psychology research programme has suggested that 
instructional approaches termed direct or explicit instruction may be more effec-
tive for student attainment than those relying on guided discovery and collabora-
tive group learning (Gersten et al., 2009; Kirschner, Sweller, & Clark, 2006; Klahr 
& Nigam, 2004). On the face of it, this would appear to be an anomaly for the 
sociocultural research programme. If teacher-centered instructional approaches, 
sometimes involving scripted explanations and an emphasis on mastery of skills 
through sustained individual repetitive practice, are successful in building both 
procedural and conceptual mathematical knowledge, then how can it be that 
knowledge is constituted primarily in social groups rather than in individuals? To 
be clear, we do not suggest that this is an insurmountable anomaly for the socio-
cultural research programme, only that it is one that should be accommodated, if 
possible, in its protective belt.

As an example in the opposite direction, consider recent sociocultural work on 
micro-identities. Many sociocultural researchers have noticed that the mathemat-
ical identities students adopt can substantially influence how they learn mathe-
matics (e.g., Martin, 2000; Sfard & Prusak, 2005). Traditionally, identities have 
been conceived as being relatively stable over time. However, Wood (2013) 
recently illustrated how students’ identities may change over extremely short 
periods in response to relatively minor changes in context. She used the terms 
“micro-identity” and “macro-identity” to distinguish between identities that show 
moment-to-moment changes and those that are more stable over time. Importantly, 
Wood reported a case study of one student who demonstrated at least three 
different mathematical micro-identities during the course of a single lesson, and 
Wood argued that these developing identities influenced the quality of the 
student’s learning. This observation poses an interesting challenge to the experi-
mental psychology research programme in which researchers often assume that 
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the factors that affect behavior within a study are due to relatively stable individual 
traits of the participant, to the experimental stimuli, or to independently and identi-
cally distributed random noise. Wood’s study implies that actions that appear 
innocuous from the researchers’ perspective may systematically influence behavior 
in a way that cannot be assumed to be identical across participants or conditions, an 
observation that deserves attention.

To be clear, the benefits of more between-programme engagement is symmetric. 
We are not merely arguing that mathematics education would benefit from some 
sociocultural, didactical theory and semiotic researchers being exposed to experi-
mental psychology research but also that experimental psychology researchers 
would benefit from exposure to the research programmes common in the modern 
mathematics education literature. If Lakatos’s (1978) analysis of academic  
disciplines is correct, then exposure to multiple research programmes aids the effec-
tive competition between programmes and, therefore, progresses the discipline.

Theoretical Remarks
We conclude the article by discussing two main issues related to our empirical and 

theoretical analysis. First, we clarify our results by considering precisely what our 
topic-modeling approach allows us to conclude about a research programme’s trajec-
tory. Second, we discuss whether Feyerabend’s (1981, 1993) criticisms of Lakatos’s 
(1978) methodology of scientific research programmes apply to our own work.

Using Topic Modeling to Identify Programme Shifts
Our analysis used a topic-modeling approach to identify trends in the mathematics 

education literature with a particular focus on the research programmes that 
researchers have adopted over the last 5 decades. The approach works by analyzing 
the occurrence of words within papers. Although this method seems to have been 
successful at identifying topics that represent research programmes, the presence 
of a particular word associated with a particular research programme is not sufficient 
to conclude that the programme is progressing or degenerating. The same words are 
used to denote ideas from the hard core of a programme both during progressing 
periods and degenerating periods.

The implication of this observation is that we cannot directly conclude that a 
programme has degenerated in Lakatos’s (1978) sense, only that interest in it has 
declined over time. Specifically, although degenerating research programmes will 
decline in prominence over time, we cannot conclude that if a research programme 
has declined in prominence, then it must have been degenerating. Programmes may 
lose (or gain) interest for reasons unrelated to whether they are degenerating (or 
progressing). Indeed, we have suggested that the experimental psychology 
programme did not degenerate but rather migrated. This raises the possibility that 
a similar phenomenon could account for other trends observed in our data. For 
instance, perhaps constructivist mathematics education research outputs have 
migrated to different (or new) journals since the social turn. Similarly, perhaps 
educational research on Euclidean geometry has migrated since the 1970s. Although 
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we have no reason to believe that these hypotheses are plausible, further research 
would be required to test them directly.

Feyerabend’s Critique of Lakatos
Throughout this article, we have framed our analysis of trends in the mathematics 

education literature using Lakatos’s (1978) methodology of scientific research 
programmes. However, Lakatos’s account is not uncontested. The main critique 
comes from Feyerabend’s (1981, 1993) “anarchist theory of knowledge.” Feyerabend’s 
criticisms of Lakatos fall into two categories. First, he argued that Lakatos’s use of 
historical rational reconstructions as evidence was arbitrary in several different 
ways. He felt that Lakatos failed to justify (a) his decision only to reconstruct scien-
tific episodes from a relatively restricted historical period (the last 200 years), (b) 
his choice of the specific episodes to reconstruct, and (c) the actual methods by which 
he conducted his reconstruction. Second, Feyerabend suggested that there were no 
reasons to support Lakatos’s belief that his methodology of scientific research 
programmes could show that scientists behaved rationally in their choice of research 
programme. He wrote that “we can only say that one programme was accepted while 
the other receded into the background; we cannot add that the acceptance was 
rational or that a rational development took place” (Feyerabend, 1981, p. 220).

Is our use of Lakatos’s (1978) methodology of scientific research programmes 
vulnerable to Feyerabend’s (1981, 1993) criticisms? With respect to the first, our 
inclusive approach of analyzing every article published in ESM and JRME since 
they began publishing seems to provide a defense against the charge of arbitrariness. 
Whereas Lakatos chose specific historical incidents to analyze, we considered every 
article published by these journals, widely considered to be the two leading journals 
in the field. In view of ESM and JRME’s status, it seems probable that most of the 
field’s important trends are represented in the articles that they publish. Nevertheless, 
we are vulnerable to at least one charge of arbitrariness, that our sample included 
only journals that publish in English. This important limitation should be borne in 
mind when considering our findings.

Feyerabend’s (1981, 1993) second criticism does not seem to apply to our use of 
Lakatos’s (1978) work. Whereas Lakatos was keen to show that scientists are 
behaving rationally when they choose to move from a progressing to a degenerating 
research programme, we do not require this assumption. Our goal was not to argue 
that those who took part in the social turn were being either rational or irrational 
when they did so; rather, we have used Lakatos’s methodology of scientific research 
programmes as a descriptive—not normative—framework. In that sense, 
Feyerabend’s main criticisms of Lakatos do not apply to our analysis. However, our 
suggestion that mathematics education would benefit from greater interaction 
between its research programmes does have a normative flavor. But Feyerabend 
(1993) advanced a similar argument. He wrote that

Some of the most important formal properties of a theory are found by contrast, and not 
by analysis. A scientist who wishes to maximize the empirical content of the views he 
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holds and who wants to understand them as clearly as he possibly can must therefore 
introduce other views; that is, he must adopt a pluralistic methodology. (p. 21)

In sum, we have argued that mathematics education would benefit from greater  
interaction between the experimental psychology and sociocultural research 
programmes. This is a proposal that Feyerabend would have wholeheartedly 
endorsed.
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