
© Colin Foster, 2003   www.foster77.co.uk 

 

1.16   Factors, Multiples, Prime 
             Numbers and Divisibility 
 

 Factor – an integer that goes into another integer exactly without any remainder. 
Need to be able to find them all for a particular integer – it’s  usually  best to start at 1 and find them in pairs. Write 
them  at  opposite  ends  of  the  page  so  that  you  have  them  in  order  when  you’ve  finished. 
e.g., for 20 begin  1, 2,      , 10, 20 
You need only try every number up to the square root of the number n  whose factors  you’re  finding.  Any  number  
bigger than n  would already have been found because its partner would be smaller than n . 

 Multiple – a number in the times table. 
 Prime Number – a number with exactly two factors (1 and itself). 

By  this  definition  1  isn’t  prime  because  it  hasn’t  got  enough  factors. 
 Factors and multiples are opposites in the sense that if a  is a factor of b  then b  is a multiple of a . 
 Another difference is that all numbers have a finite number of factors but an infinite number of multiples. 
 It can be useful to find the HCF and LCM by listing the factors/multiples before moving on to using prime 

factorisation  to  do  it.  It’s  helpful  to  find  both  the  HCF  and  the  LCM  for  the  same  pairs  of  numbers  so  that  pupils  are  
less likely to muddle up the two processes. 
HCF must be less than or equal to the smaller/smallest of the numbers; LCM must be more than or equal to the 
larger/largest of the numbers. 

 

1.16.1 Find a square number that has fewer than 3 factors. 
Find an even number that is prime. 
 

Answers: 1 (only one factor –itself) 
 
2 only 

1.16.2 Shade in on a 100 square (see sheet) all the even 
numbers and the multiples of 3, 5 and 7 (not 
including 2, 3, 5 and 7 themselves). 
The prime numbers are left. 
 

There are infinitely many prime numbers. Euclid 
(about 330-270 BC) proved so by contradiction: 
Imagine there are only a certain number. Imagine 
multiplying them all together and adding 1. This 
new number either is prime (contradiction) or else it 
has a prime factor. But none of the prime numbers 
you’ve  already  got  can  be  factors  (all  go  in  with  
remainder 1), so contradiction again. Therefore, 
proved. 
 

See 100-square sheet. 
There are 25 of them. 
It’s  useful  to  have  a  list  of  prime  numbers  less  than  
100 by this means or some other (see sheet suitable 
for sticking into exercise books). 
 
You only need to go up to multiples of 7 because 11 
is the next prime number and 211 100 . 
This  process  is  sometimes  called  the  “Sieve  of  
Eratosthenes”  (about 280 BC – 190 AD). 
 
The logic of proof by contradiction can be 
appealing. 
 

1.16.3 NEED scrap paper (A4). 
Give each pupil (or pair) a sheet of scrap paper. Fold 
into 20 pieces (5 × 4, not as hard as it sounds!), tear 
up, write on the numbers 1-20. 
Then,  “Show  me  the  multiples  of  4”,  and  pupils  push  
those numbers into one spot. 
“Show  me  the  prime  numbers  greater  than  7”,  etc. 
 

 
This  doesn’t  need  to  be  done  too carefully. 
 
It’s  easy  for  the  teacher  to  see  how  everyone  is  
doing. 
 
Can use this method for other number work; e.g., 
“Show  me  four  numbers  that  add  up  to  15”,  or  “four  
numbers  with  a  mean  of  8.” 

1.16.4 Draw  a  Venn  diagram  with  subsets  like  “multiples  of 
4”,  “even  numbers”,  “factors  of  18”,  “prime  
numbers”,  etc. 
 

Could  extend  to  probability;;  e.g.,  “If  you  choose  an  
integer at random from the set 1-20, what is the 
probability  of  choosing  an  even  prime  number?”  
Answer 1

20 . 
1.16.5 Find a number with only 1 factor. 

Find some numbers with exactly 2 factors.  
Find  some  numbers  with  exactly  3  factors.  What’s  
special about them? 
 
 
 

Answers: only number 1 
2, 3, 5, 7, etc. (prime numbers) 
4, 9, 25, etc. 
They’re  squares  of  prime  numbers. 
(If p  is the prime number then the factors of 2p  are 

1, p  and 2p .) 
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What kind of numbers have n  factors? 
How can you decide how many factors a number 
will have without working them all out? 
 
 
 
 
 
You can set a challenge such as finding a number 
with exactly 13 factors. 
One answer would be 12p  (where p  is a prime 
number), so choosing 3p   gives the number 531 
441. 
The factors are 1, 3, 9, 27, 81, 243, 729, 2 187, 
6 561, 19 683, 59 049, 177 147 and 531 441, and 
there are thirteen of them. 
 
 
 
 
 
 
 
 
 
So  it’s  to  do  with  the  number  of  factors  that   n  has 
(and n  is how many factors the original number 
has)! 
 
 

Square numbers have an odd number of factors 
because  they  have  a  “repeated”  factor. 
 
Suppose that p , q , r ,  …  are  prime  numbers,  and  
a , b , c ,  …  are  integers   0 . Any power of a prime 
number can be written as ap , and will have 1a   

factors ( 2 31, , , , ... ap p p p ). Hence p  has 2 factors 

and 2p  has 3 factors, as above. Since every number 
can be factorised into primes, every number x  can 
be written as ...a b cp q r  and will have 
( 1)( 1)( 1)...a b c    factors, since any of the 1a   
powers of p  can be multiplied by any of the powers 
of the others. 
So the possibilities are as below. 
 

no. of 
factors 

prime factorisations of numbers that 
have that many factors 

1 1  
2 p  

3 2p  

4 3p  or pq  

5 4p  

6 5p  or 2p q  

7 6p  

8 7p  or 3p q  or pqr  

9 8p  or 2 2p q  

10 9p  or 4p q  
 

1.16.6 For  prime  factorisation,  it’s  possible  to  draw  tree 
diagrams going down the page. 
Stop and put a ring around it when you reach a 
prime number. 
Try each time to split the number into two factors 
that are as nearly equal as possible, because that 
leads to fewer steps. 
 
Could  discuss  why  we  don’t  count  1  as  a  prime  
number. 
 

e.g., for 24 
24 

/           \ 
6               4 

/    \           /   \ 
2      3        2       2 

so 24 = 23 × 3 
 
One reason is that prime factorisation would go on 
for  ever!  It’s  useful  to  have  one  unique  way  (apart  
from the order you write it in) of prime factorising 
every integer. 
 

1.16.7 Tests for divisibility. Build up a big table of all the 
tests on the board (see sheet). 
Then  make  3  columns  headed  by  3  “random”  
numbers (e.g., 2016, 3465 and 2400) and put the 
numbers 1-12 down the side. Place either a tick or a 
cross in each column to say whether the column 
number is divisible by the row number. 

It’s  productive  to  look  for  patterns  in  the  answers  
(e.g.,  if  a  number  is  divisible  by  10  then  it’s  
necessarily divisible by 2 and by 5, etc.). 
 
Note for example that divisible by 4   divisible by 
2, but not the other way round. 

1.16.8 “I  come  into  the  classroom  and  ask  the  class  to  get  
into pairs – but 1 person is left over. 
We have to have groups of equal size, so I say never 
mind, instead get into groups of 3. Again 1 person is 
left over. 
We try groups of 4. Again, 1 person is left over. 
Finally groups of 5 works. How many people do you 
think  there  are  in  the  class?” 
 

Answer: 25 pupils; 85, 145, 205, etc. also work but 
hopefully would not be real class sizes! 
 
One strategy is to say that 1n   must be a multiple 
of 2, 3 and 4; i.e., a multiple of 12, and go through 
the multiples of 12 until you find one where the 
number that is one higher is a multiple of 5. 

1.16.9 “I’m  thinking  of  a  number  …”  or  “I’m  thinking  of   Lots of possibilities. 
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two  numbers  …” 
 

1.16.10 Which number less than 100 has the most factors? 
 
Which has the fewest? 
 

Answer: 96 (= 25 × 3), so 12 (= 6 × 2) factors: 
1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96. 
 
Answer: 1 (just has itself) 

1.16.11 Perfect Numbers. 
Classify each integer up to 20 as perfect (if it is the 
sum of all its factors apart from itself), abundant (if 
it is less than the sum of all its factors apart from 
itself) or deficient (if it is more). e.g., 6 = 1 + 2 + 3 
so  it’s  a  perfect  number,  whereas  the  factors  of  8  
(apart from  8)  add  up  to  only  1  +  2  +  4  =  7,  so  it’s  
deficient (but only just). 
 
 
 
 
 
 
Why  do  you  think  we  don’t  include  the  number  itself  
when we add up the factors? 
Because  then  you’d  always  get  too  much  and  it  
wouldn’t  be  very  interesting! 

 
no.  no.  no.  no.  

1 d 6 p 11 d 16 d 
2 d 7 d 12 a 17 d 
3 d 8 d 13 d 18 a 
4 d 9 d 14 d 19 d 
5 d 10 d 15 d 20 a 

 
Most  numbers  are  deficient,  because  they  don’t  have  
enough factors. Primes and powers of primes are all 
deficient, although powers of 2 are almost perfect 
(just too small by 1). 
Perfect numbers are 6, 28, 496, 8218, etc. 
Abundant  numbers are 12, 18, 20, 24, 30, 36, etc. 
Any multiple of a perfect or abundant  number is 
abundant, and any factor of a perfect or deficient 
number is deficient. 
No-one knows if there are any odd perfect numbers, 
but  they’ve  checked  up  to  10300 and  haven’t  found  
any! 
 

1.16.12 Which two numbers, neither containing any zeroes, 
multiply to make 100? 
1000? 
1 000 000? 
 

Answers: 4 and 25 
 
8 and 125 
64 and 15625 
In general, 10 2 5x x x  . 
 

1.16.13 There are three brothers. The first one comes home 1 
day in every 6 days, the second one once every 5 
days and the third one once every 4 days. How often 
will they all be together? 
 

Answer: The LCM of 6, 5 and 4 is 60. 
So  they’ll  meet  every 60 days. 
 
This assumes that the 1st and 3rd brothers  don’t  
perpetually miss each other (i.e., they start off all 
together). The numbers have to be pairwise co-prime 
to guarantee that they will all meet. 
 

1.16.14 What is the smallest integer that all of the integers 1, 
2, 3, 4, 5, 6, 7, 8 and 9 will go into? 
 

Answer: The LCM of all the numbers 1 to 9 is 
23 × 32 × 5 × 7 = 2520. 

1.16.15 What is special about this number? 
3816547290 
 
 
Can you invent another number like it? 
 

Answer: Working from the left, the first digit is 
divisible by 1, the first two digits together (38) are 
divisible by 2, the first three digits are divisible by 3, 
etc. (And it uses the digits from 0 to 9 once each.) 
 

1.16.16 What collection of positive integers that add up to 
100 (repeats allowed) makes the largest possible 
product when they are all multiplied together? 
 
 
 
 
 
 
 
 
 
 

Answer:  use  two  2’s  and  thirty-two  3’s,  and  you  get  
a total of 100 and a product of 2 322 3 , which is 
about 7 × 1015. 
The  logic  behind  this  is  that  two  3’s  have  a  bigger  
product  (9)  than  three  2’s  (8),  so  you  would  rather  
use  3’s  than  2’s,  but  since  6’s  don’t  go  into  100  you  
have  to  use  two  2’s  to  make  the  sum  of 100. 
Obviously  you  wouldn’t  use  any  1’s,  since  they  
wouldn’t  increase  the  product.  There’s  no  advantage  
using  4’s,  because  2  +  2  =  4  and  2  ×  2  =  4.  For  any  
n  bigger than 4, 2( 2) 4n  ,  so  it’s  better  to  split  
up these  numbers  into  two’s. 
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What about other totals? e.g., 16? 
 
A related problem is to find the maximum product of 
two numbers (not necessarily integers) that sum to 
100. 
e.g., 10 + 90 = 100 and 10 × 90 = 900. 
Can you split up 100 into two numbers that have a 
bigger product than this? 
 
 
What about multiplying together three or more 
numbers that sum to 100? 
 

Answer: 4 23 2 324   by the same logic. 
 
Answer: If the smaller of the two numbers is x , then 
the product p  will be (100 )p x x   and this is a 
quadratic function with a maximum value of 2500 
when 50x  . 
In general, if the total has to be t  then the maximum 
product is 

2

2 2 4
t t t  . 

 
If n  numbers have a total of t , then their product 
will be a maximum when each of them is t

n , in 

which case their product will be  nt
n . 

 
1.16.17 Prove that all prime numbers > 3 are either one more 

or one less than a multiple of six. 
 
 
 
This is a kind of proof by exhaustion. We say that all 
integers can be written in one of 6 ways and we list 
them. Then we exclude types of number that we know 
could never be prime. All prime numbers must fit 
one of the two options left. 

Answer: Every number can be written as 6n  or 
6 1n   or 6 2n   or 6 3n   or 6 4n   or 6 5n  . 
( 6 6n   would be a multiple of 6, so could be written 
as just 6n , etc.). 
Two’s  go  into   6n , 6 2n   and 6 4n   (since both 
terms are multiples of 2), and threes go into 6n  and 
6 3n  . So the only numbers that don’t have factors 
of 2 or 3 are 6 1n   and 6 5n  . Not all of these will 
be prime, of course (e.g., 25 is 6 1n  ), but all prime 
numbers (apart from 2 and 3) must take one of these 
forms. 
 

1.16.18 Make a chart to show factors of numbers up to, say, 
20. Shade in the factors. 
Look for patterns. 
 
 
 
 
 
 
 
 
 
How will the pattern continue? 
 

factor 
no. 1 2 3 4 5 6 7 8 9 10 
1           
2           
3           
4           
5           
6           
7           
8           
9           
10           

 

 
1.16.19 Think of an integer between 1 and 9. 

Add 1. Multiply by 9. Add up the digits. Divide by 
3. Add 1. What do you get? 
 
Always 4. Why? 
 

The digit sum of 9n  where n  is an integer 10  is 
always 9. So when you divide by 3 and add 1 you 
will always get 4. 
 
 

1.16.20 Prisoners. A hundred prisoners are locked in their 
cells (numbered 1 to 100). The cell doors have 
special handles on the outside. When a guard turns 
the handle a locked door is unlocked and an 
unlocked door is locked. 
All the doors start off locked. Then prison guard 
number 1 comes along and turns the handle of every 
door once (so all the doors are unlocked). Guard 
number 2 comes along and turns the handle of every 
second door (starting with cell 2). Guard 3 turns 
every third handle, and so on. 
After the 100th guard has been past, which prisoners 
can now get out of their cells? 
 

Answer: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 
The answer is the square numbers since they have an 
odd number of factors, so their handles will have 
been turned an odd number of times. 
 
Could try with a smaller number of cubes or pennies 
(heads  up  for  “unlocked”,  tails  for  “locked”). 
 

1.16.21 Stamps. I have an unlimited number of 2p and 3p Answers: With co-prime (HCF=1) values you can 
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stamps. What possible (integer) values can I make? 
 
 
 
 
 
What about with 3p and 4p stamps? 
 
 
 
 

 
What about 3p and 5p stamps? 
 
 
Variations on this include coins (obviously); fitting 
kitchen cabinets into different length kitchens; and 
scores with an unlimited number of darts on 
dartboards that have just a few different sections. 
 
 
 
 
 
 
 
This is a very rich investigation which can run and 
run. It can turn into a Fibonacci-type problem by 
asking how many ways there are of making, say, 50p 
from 5p and 7p stamps. You can let the order matter 
by saying that you are buying the stamps at a post 
office and the assistant is annoyingly pushing the 
stamps under the safety screen one at a time. 
So 5p + 7p and 7p + 5p count as different ways of 
making 12p. 
A spreadsheet might help. 
 
 
 
(See the table of answers on the sheet – highest 
impossible amounts are shaded in.) 
 

make all possible values beyond a certain number; 
e.g., with 2p and 3p, only 1 is impossible. Clearly 2p 
stamps enable all even amounts, and one 3p stamp 
plus any number of 2p stamps enable all odd 
amounts 3 or more. Hence everything except 1p. 
 
Harder now. Consider 3p stamps (since 3<4). If at 
any stage I can make 3 consecutive numbers, then 
from  then  on  I  can  have  any  amount,  by  adding  3’s  
to each. You can do 6 (= 3 + 3),  
7 (= 3 + 4) and 8 (= 4 + 4), so the only impossibles 
are 1, 2 and 5. 
 
Again, the first 3 consecutives you can make are 8 
(3+5), 9 (3+3+3) and 10 (5+5), so the only 
impossibles are 1, 2, 4 and 7. 
 
In general where x  and y  are co-prime, the highest 
impossible amount is ( )xy x y  . 
(This is hard to prove, but see sheet.) 
 
Functions like 3 5A x y   where x  and y  are 
integers are called Diophantine equations 
(Diophantus, about 200-280 AD). A  can be any 
integer if the co-efficients (3 and 5) are co-prime 
(HCF=1), but x  and y  may need to be negative. 
 
Answer: 57 ways. 
The key thing to notice is that if cn  is the number of 
ways of making a total of c  pence out of x  pence 
and y  pence stamps, then assuming that c x  and 
c y , c c x c yn n n   . (because you add one x  
pence or one y  pence stamp). For example, if 5x   
and 7y   then 17 3n   and 19 3n   so 24 6n  . 
 
You could  make  a  tree  diagram  starting  … 

50 
/          \ 

43          45 
/     \     /     \ 

36    38    38    40 
…  to  count  up  the  number  of  ways. 
 

1.16.22 Spirolaterals. 
Make a Vedic Square by writing the numbers 1 to 9 
around the edge of an 8 × 8 square, multiplying and 
filling in the boxes. 
Then re-draw it finding the digit sums of the 
answers. 
This gives 
 

1 2 3 4 5 6 7 8 9 
2 4 6 8 1 3 5 7 9 

3 6 9 3 6 9 3 6 9 

4 8 3 7 2 6 1 5 9 

5 1 6 2 7 3 8 4 9 

6 3 9 6 3 9 6 3 9 

7 5 3 1 8 6 4 2 9 

8 7 6 5 4 3 2 1 9 

 Islamic art is based on Vedic squares. 
(Digit sum = sum of the digits of the numbers.) 
 

 
 

S 
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9 9 9 9 9 9 9 9 9 
 
Then begin somewhere in the middle of a sheet of 
A4 0.5 cm × 0.5 cm squared paper. 
Mark a dot. Choose a column in the table, say the 
3’s.  Draw  a  line  3  squares  long  straight  up  the  paper, 
turn right, draw a line 6 squares long, turn right, then 
9, then 3, and so on down the column, always 
turning right (see drawing on the right – S is the 
starting point). 
When you get to the bottom of a column of numbers, 
just start again at the top. 
Keep going until you get back to the place where 
you started. 
 
The easiest columns to do are 3, 6, 9 (but 9 is boring 
– a square, obviously). 
 

 
All of them will fit on A4 0.5 cm × 0.5 cm squared 
paper, but you need to start in a sensible place. 
Teacher may need to assist.  
 
 
 
The tricky thing is seeing that turning right when 
coming down the page towards you means actually 
going left. Some people find it helpful to turn the 
paper  as  you  go  (like  turning  a  map),  so  you’re  
always drawing away from you, and some people 
just  find  that  confusing.  It’s  also  useful  to  mention  
the  name  “spirolateral”  so  we  expect  it  to  “spiral  
in”,  not  meander further and further towards the 
edge of the paper! 
 

1.16.23 Diagonals in Rectangles. 
If an x y  rectangle is drawn on squared paper, 
how many squares does the diagonal line pass 
through? 
x  and y  are integers. 

e.g., for a 5 3  rectangle, the line goes through 7 
squares. 

 
We  count  it  as  “going  through”  a  square  even  if  it  
only just clips the square. Only if it goes exactly 
through a crossing-point do we not count the square. 
 

Answer: 
If x  and y  are co-prime (HCF=1) then the line 
must go through 1x y   squares. This is the 
smallest number of squares between opposite 
corners. (Imagine a curly line – see below). 

 
If ( , ) 1HCF x y   then every 1

( , )HCF x y  of the way 

along the diagonal line will be a crossing point, 
since ( , )

x
HCF x y  and ( , )

y
HCF x y  will be integers. 

Each of these ( , ) 1HCF x y   crossing points means 
one fewer square for the diagonal to go through. So 
that means the total number of squares will be 

1 ( ( , ) 1)
( , )

x y HCF x y
x y HCF x y
   

  
 

 
1.16.24 Snooker investigation. 

A snooker ball is projected from the near left corner 
(A, below) of a rectangular snooker table at 45° to 
the sides. If there are pockets at all four corners, and 
the table has dimensions x y  ( x  is the horizontal 
width), which pocket will the ball end up in? 
x  and y  are integers. 

 
Assume that every time the ball hits a side it 
rebounds at 45°, and that the ball never runs out of 
kinetic energy. 
 
Above for a 5 3  table, the answer is pocket C. 
 
Try some examples on squared paper. 
 

Answer: 
Every diagonal step forward moves the ball 1 square 
horizontally and 1 square vertically. Since x  is the 
horizontal distance, after ,3 ,5 ,...x x x  “steps”  the  
ball will be at the right wall. After 2 ,4 ,6 ,...x x x  
steps the ball will be at the left wall. 
Similarly, after ,3 ,5 ,...y y y  steps the ball will be at 
the top side. After 2 ,4 ,6 ,...y y y  steps the ball will be 
at the bottom side. 
Therefore, the first time that a multiple of x  is equal 
to a multiple of y  (i.e., after ( , )LCM x y  steps), the 
ball will be in one of the corners. 
 
It will never be corner A, because the ball only 
reaches there if it travels an even number of 'x s  
and an even number of 'y s . That will never be the 
LCM of x  and y  because half that many 'x s  
would match half that many 'y s . 

If ( , )LCM x y
x

 is odd, then the pocket will be either 

A 

B 

D 

C 
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Hint: 
How many diagonal steps will the ball move before 
it lands in a pocket? 
 

C or D. Otherwise, it will be A or B. 

If ( , )LCM x y
y

 is odd, then the pocket will be either 

B or C. Otherwise, it will be A or D. 
Taken together, this means you can always predict 
which pocket the ball will end up in. 
 
e.g., for a 10 4  table, (10,4) 20LCM   
20
10  is even so AB side; 20

4  is odd so BC side. Hence 
pocket B. 
 

1.16.25 What is the significance of the digit sum of an 
integer  when  the  integer  isn’t  a  multiple  of  9?  Try  
working some out. 
 
Find  out  what  “casting  out  9’s”  refers  to.  (Suitable  
for a homework: ask grandparents.) 
 
You can prove that the digit sum of a 3-digit 
number, say, is the remainder when dividing by 9 by 
writing " "abc , as 100 10n a b c   . (This process 
would work just as well however many digits the 
number had.) 

100 10
99 9
9(11 ) ( )

n a b c
a b a b c

a b a b c

  

    

    

 

so a b c   is the remainder when n  is divided by 
9. (This assumes that 9a b c   .  If  it’s  equal to 9, 
then n  is  a  multiple  of  9;;  if  it’s  more than 9, then 
we can just start again and find the digit sum of this 
number, because the remainder of this number when 
divided by 9 will be the same as the remainder of n  
when divided by 9.) 
 

Answer:  It’s  the  remainder  when  you  divide  the  
number by 9. E.g., 382 9 42  , remainder 4. And 
the digit sum of 382 is 4 (actually 13, but the digit 
sum of 13 is 4). 
(The digit sum of a multiple of 9 is itself a multiple of 
9.) 
 
Hence  the  method  of  casting  out  9’s”  in  which  every  
integer in the calculation is replaced by its digit 
sum. When the calculation is done with these 
numbers, the answer should be the digit sum of the 
answer to the original question. 
This provides a way of checking. 
e.g., 946 326 1272  , replacing 946 and 326 by 
their digit sums gives 1 2 3  , and 3 is the digit 
sum  of  1272.  This  doesn’t  guarantee that the sum is 
correct, but if this test doesn’t work then the sum is 
definitely wrong. 
 
This  is  a  bit  like  the  modern  “check-sums”  method  
used on bar-codes to make sure the machine has 
read the numbers accurately. Here a single mistake 
can always be identified. 
 

1.16.26 Why  not  define  “highest  common  multiple”  and  
“lowest  common  factor”,  as  well? 

Answer: If you think about it, LCF would always be 
1 and HCM would always be infinite! 
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1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 
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Prime numbers less than 100 
 

2 3 5 7 11 
13 17 19 23 29 
31 37 41 43 47 
53 59 61 67 71 
73 79 83 89 97 
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Prime Numbers 
 

2 3 5 7 11 13 17 19 23 29 
31 37 41 43 47 53 59 61 67 71 
73 79 83 89 97 101 103 107 109 113 

127 131 137 139 149 151 157 163 167 173 
179 181 191 193 197 199 211 223 227 229 
233 239 241 251 257 263 269 271 277 281 
283 293 307 311 313 317 331 337 347 349 
353 359 367 373 379 383 389 397 401 409 
419 421 431 433 439 443 449 457 461 463 
467 479 487 491 499 503 509 521 523 541 
547 557 563 569 571 577 587 593 599 601 
607 613 617 619 631 641 643 647 653 659 
661 673 677 683 691 701 709 719 727 733 
739 743 751 757 761 769 773 787 797 809 
811 821 823 827 829 839 853 857 859 863 
877 881 883 887 907 911 919 929 937 941 
947 953 967 971 977 983 991 997 1009 1013 

1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 
1153 1163 1171 1181 1187 1193 1201 1213 1217 1223 
1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 
1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 
1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 
1453 1459 1471 1481 1483 1487 1489 1493 1499 1511 
1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 
1597 1601 1607 1609 1613 1619 1621 1627 1637 1657 
1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 
1741 1747 1753 1759 1777 1783 1787 1789 1801 1811 
1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 
1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 
1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 
2063 2069 2081 2083 2087 2089 2099 2111 2113 2129 
2131 2137 2141 2143 2153 2161 2179 2203 2207 2213 
2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 
2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 
2371 2377 2381 2383 2389 2393 2399 2411 2417 2423 
2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 
2539 2543 2549 2551 2557 2579 2591 2593 2609 2617 
2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 
2689 2693 2699 2707 2711 2713 2719 2729 2731 2741 
2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 
2833 2837 2843 2851 2857 2861 2879 2887 2897 2903 
2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 
3001 3011 3019 3023 3037 3041 3049 3061 3067 3079 
3083 3089 3109 3119 3121 3137 3163 3167 3169 3181 
3187 3191 3203 3209 3217 3221 3229 3251 3253 3257 
3259 3271 3299 3301 3307 3313 3319 3323 3329 3331 
3343 3347 3359 3361 3371 3373 3389 3391 3407 3413 
3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 
3517 3527 3529 3533 3539 3541 3547 3557 3559 3571 
3581 3583 3593 3607 3613 3617 3623 3631 3637 3643 
3659 3671 3673 3677 3691 3697 3701 3709 3719 3727 
3733 3739 3761 3767 3769 3779 3793 3797 3803 3821 
3823 3833 3847 3851 3853 3863 3877 3881 3889 3907 
3911 3917 3919 3923 3929 3931 3943 3947 3967 3989 
4001 4003 4007 4013 4019 4021 4027 4049 4051 4057 
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Tests for Divisibility 
 
 
integer test divides into the number  if… 

1 no test any integer 

2 look at units digit 0, 2, 4, 6 or 8 

3 digit sum  3, 6, 9 

4 look at last 2 digits divisible by 4 

5 look at units digit 0 or 5 

6 test for 2 and test for 3 passes both tests 

7 double the units digit and subtract from 
the rest of the number  divisible by 7 

8 divide it by 2 divisible by 4 

9 digit sum  9 

10 look at units digit 0 

11 alternating  digit  sum  (…+–+–+) 0 
 
 
 
 
Notes 
 
  means do the same thing to the answer and keep going until you have only 1 digit left 
 “digit  sum  ”  on  732  gives  732   12  3 (so passes the test for 3) 
 “alternating  digit  sum  (…+–+–+)”  on  698786  gives  + 6 – 8 + 7 – 8 + 9 – 6 (working from right to 

left and beginning with +) = 0 (so passes the test for 11) 
 “double  the  units  digit  and  subtract from the rest of the number ”  on  39396  gives 

3939 – 12 = 3927  392 – 14 = 378  37 – 16 = 21, divisible by 7 (so passes the test for 7) 
 
 You can use a calculator to generate multiples to use for practice. 

(E.g., type in a 4-digit  “random”  integer,  multiply  by  7  and  you  have  a  “random”  multiple  of  7  for  
trying out the test for divisibility by 7.) 

 A test for divisibility by 12 could be to pass the tests for divisibility by 3 and by 4. 
It  wouldn’t  be  any  good  to  use  the  tests  for  divisibility  by  2  and by 6 because passing the test for 6 
means that the number must be even so the test for 2 adds nothing. 
3 and 4 are co-prime  (HCF  =  1),  but  6  and  2  aren’t. 
 
 
 
 

These tests are worth memorising and practising. 
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Stamps Investigation (Proof) 
 
If the stamps are x  pence and y  pence ( x and y  co-prime), then the highest impossible value (with unlimited 
quantities of each) is xy x y   pence. 
 
This is easy to show for a particular pair of stamp values.
 
For example, for 3x   and 5y   we write down all 
the positive integers using three columns (see right – 
imagine the columns going down for ever). 
 
We’re  going  to  shade  in  all  the  numbers  that  are  
possible. 
Clearly the right column will all be possible by using 
just the 3p stamps, because the numbers are all 
multiples of 3. 
 
In the second row, 5 will be possible (one 5p stamp) 
so we shade that in. Also everything under 5 in the 
second column will be possible by using one 5p 
stamp and different numbers of 3p stamps. 
 

1 2 3 

4 5 6 

7 8 9 

10 11 12 

13 14 15 

16 17 18 

… … … 
 

 
Similarly, 10 (two 5p stamps) and everything below it will be possible. 
So 7 is the highest impossible amount (and this is 3 5 3 5   ). 
 
 
Now we try the same thing generally, with x  pence and y  pence stamps ( x and y  co-prime). 
 
The diagram is shown on the right. 
We will assume that x y . 
As before, the right column will all be possible 
(multiples of x  pence), so we shade it in. 
 
The column containing y  will all be possible from 
y  downwards ( y , y x , 2y x ,  …)  and  this  

cannot be the same column as the x  column ( x , 2x , 
3x ,  …)  because   y  is not a multiple of x  (they’re  
co-prime). 
 

1  2  3  … 1x   x  

1x   2x   3x   … 2 1x  2x  

2 1x  2 2x  2 3x  … 3 1x  3x  

… … … … … … 

 
 

For the same reason, 2 y  cannot be in either of the two columns dealt with so far (unless there are only two 
columns because 2x  ).  (It  can’t  be  in  the  “ x  column”  because   2 y  cannot be a multiple of x , and the extra y  
places moved on from y  can’t  equal  a  multiple  of   x , which would be necessary if it were in the same column as 
y ). 

So we keep locating the next multiple of y , and we always find it in a previously unvisited column, and we shade 
it in and we shade in the rest of that column below it. 
 
There are x  columns altogether, so when we reach ( 1)x y  and shade that in (and all the numbers beneath it) the 
highest impossible amount will be the number directly above ( 1)x y  (since all the other numbers in that row will 
already be shaded in). 
This number will be ( 1)x y x xy x y     , and so this will be the highest impossible value. 
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Number of ways cn  of making up a cost c  pence out of stamps 
c  5p, 7p 3p, 7p 5p, 8p 5p, 9p 7p, 10p 
1 0 0 0 0 0 
2 0 0 0 0 0 
3 0 1 0 0 0 
4 0 0 0 0 0 
5 1 0 1 1 0 
6 0 1 0 0 0 
7 1 1 0 0 1 
8 0 0 1 0 0 
9 0 1 0 1 0 
10 1 2 1 1 1 
11 0 0 0 0 0 
12 2 1 0 0 0 
13 0 3 2 0 0 
14 1 1 0 2 1 
15 1 1 1 1 0 
16 0 4 1 0 0 
17 3 3 0 0 2 
18 0 1 3 1 0 
19 3 5 0 3 0 
20 1 6 1 1 1 
21 1 2 3 0 1 
22 4 6 0 0 0 
23 0 10 4 3 0 
24 6 5 1 4 3 
25 1 7 1 1 0 
26 4 15 6 0 0 
27 5 11 0 1 3 
28 1 9 5 6 1 
29 10 21 4 5 0 
30 1 21 1 1 1 
31 10 14 10 0 4 
32 6 28 1 4 0 
33 5 36 6 10 0 
34 15 25 10 6 6 
35 2 37 1 1 1 
36 20 57 15 1 0 
37 7 46 5 10 4 
38 15 51 7 15 5 
39 21 85 20 7 0 
40 7 82 2 1 1 
41 35 76 21 5 10 
42 9 122 15 20 1 
43 35 139 8 21 0 
44 28 122 35 8 10 
45 22 173 7 2 6 
46 56 224 28 15 0 
47 16 204 35 35 5 
48 70 249 10 28 15 
49 37 346 56 9 1 
50 57 343 22 7 1 

  continued  … 
51 84 371 36 35 20 
52 38 519 70 56 7 
53 126 567 17 36 0 
54 53 575 84 11 15 
55 127 768 57 22 21 
56 121 913 46 70 1 
57 95 918 126 84 6 
58 210 1139 39 45 35 
59 91 1432 120 18 8 
60 253 1485 127 57 1 
61 174 1714 63 126 35 
62 222 2200 210 120 28 
63 331 2398 96 56 1 
64 186 2632 166 40 21 
65 463 3339 253 127 56 
66 265 3830 102 210 9 
67 475 4117 330 165 7 
68 505 5053 223 74 70 
69 408 6030 229 97 36 
70 794 6515 463 253 2 
71 451 7685 198 330 56 
72 938 9369 496 221 84 
73 770 10345 476 114 10 
74 883 11802 331 224 28 
75 1299 14422 793 463 126 
76 859 16375 421 495 45 
77 1732 18317 725 295 9 
78 1221 22107 939 211 126 
79 1821 25744 529 477 120 
80 2069 28662 1289 793 12 
81 1742 33909 897 716 84 
82 3031 40166 1056 409 210 
83 2080 45037 1732 435 55 
84 3553 52226 950 940 37 
85 3290 62273 2014 1288 252 
86 3563 70781 1836 1011 165 
87 5100 80888 1585 620 21 
88 3822 96182 3021 912 210 
89 6584 110947 1847 1733 330 
90 5370 125925 3070 2004 67 
91 7116 148408 3568 1420 121 
92 8390 173220 2535 1055 462 
93 7385 196706 5035 1852 220 
94 11684 229296 3683 3021 58 
95 9192 269402 4655 3015 462 
96 13700 307653 6589 2040 495 
97 13760 355221 4382 1967 88 
98 14501 417810 8105 3585 331 
99 20074 480873 7251 5025 792 

100 16577 551927 7190 4435 287 


