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1.19   Sequences 

 
 With some pupils it may be worth avoiding statements like “now  we’re  going  to  do  algebra”  because  of  the  reputation  

algebra  has  for  being  “hard”! You  can  say  later,  “you’ve  been  doing  algebra!” 
 It’s  necessary  to  distinguish  between  term-to-term rules plus starting value(s) (i.e., inductive definitions like 

13; 1  nu n u   ) and position-to-term rules (i.e., deductive definitions like 3 2nu n  , the same sequence). 
Neither  is  necessarily  “better”;;  they’re  just different ways of describing sequences. 

 Pupils sometimes assume that if a rule works for the first few terms then it will always work. (This is probably because we 
often  use  such  straightforward  sequences.)  “Points  and  Regions”  (section 1.19.11) is a helpful investigation to do to show 
that this isn’t  always  the  case. 

 Proving a rule needs some insight into what is going on. A clear diagram often helps, or looking at the problem from 
another angle. Comments of this kind appear on the right below. 
Pupils often confuse proving a result for all values of n  with checking a result for a few particular values of n . 

 
1.19.1 “James,  give  me  a  number  between  1  and  10.”  

Whatever the pupil says, the teacher doubles and 
adds 1 and writes it on the board. 
Eventually  ask,  “What’s  going  on?” 
Can use quite difficult functions. 
e.g., 3 1y x  , 10y x  , 42y x   
Another system is for the teacher to have a red board 
pen and the volunteer pupil a black pen. The pupil 
records  the  pupils’  numbers  in  black  in  the  left  
column  of  the  table;;  the  teacher  records  the  teacher’s  
number in red in the right column of the table. 
After a while we decide that it would be better to 
choose black numbers in order, so next time instead 
of choosing the black numbers randomly we just 
write 1-5 in order (and the pupil can sit down!). 
 
Pupils can invent their own table of numbers or you 
can present one on the board: 
 

black red yellow green purple white 
1 11 5 16 3 8 
2 12 10 22 8 11 
3 13 15 28 13 14 
4 14 20 34 18 17 
5 15 25 40 23 20 

 
Look for connections – always horizontal, not down 
the  columns.  “I  want  a  statement  about  how  one  
colour  is  connected  to  another  colour”,  “How  do  you  
get from the  black  numbers  to  the  red  numbers?”,  
etc. 
 
 
Pupils can make up their own tables of numbers with 
rules for getting from one colour to another. 
(See  “Making  Formulas”  sheet.) 

Teacher  as  “function  machine”. 
 
 
 
 
 

black red 
4 17 
1 2 
7 32 

 
Using black and red colours to represent sets of 
numbers is helpful. 
You can eventually write, e.g., 
black = 5 × red – 3 and then b = 5 × r – 3 and then 

5 3b r  . 
 
 
It’s  worth  keeping  the  colours  going  for  a  bit,  but  
soon you can start saying things like  “I  don’t  have  a  
white  pen,  so  I’ll  write  ‘white’  in  black”  and  pupils  
will  soon  accept  the  “colour”  even  if  it’s  all  written  
in black. 
(This work is slightly easier on a blackboard than a 
whiteboard because you generally have more 
different colours available.) 
 
Avoid embarrassing a pupil who is colour-blind. 
 
e.g., 
(or write using function machines or in words) 

10r b   (not 1b  ); 5y b  ; g r y  ; 

2p y  ; 2
gw  ; etc. 

Can you get from b to w? 
× 3 then + 5; could write using function machines or 
perhaps 3 5w b  . 
 
These  formulas  can  then  be  “formalised”  
into 3 2w y  , etc. 

1.19.2 “Matchstick  problems”,  or  similar. 
Readily available in books. Pupils have to find a 

Need to establish that n  stands  for  the  “pattern  
number”,  so   1n   for the first drawing, and so on, 
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formula to give the number of lines (or matchsticks) 
used in a sequence of drawings. 
 

and that nu  (or whatever symbol) represents the n th 
term; i.e., how many matchsticks are used in the n th 
pattern. 
 

1.19.3 NEED linking cubes. Cube Animals. 
Make a simple dog/horse/giraffe, etc. from about 8 
linking  cubes.  Make  a  second  “larger”  one  of  the  
same  “species”  but  using  more  cubes.  What  would  
the third one look like? How many cubes would it 
need for its legs?, etc. 
What would the 100th one look like? If you had 100 
cubes and you wanted to make the biggest model 
you could, how many would you use for the head? 
 

You can use different colours for different parts of 
the animal (e.g., red for the head, blue for the body, 
green for the legs, yellow for the tail) and work out 
formulas for each colour; e.g., if n  is the model 
number then the number of cubes in the head (red) 
could be 2n , perhaps. 
If you add the expressions for the number of cubes in 
the different body parts you get the formula for the 
total number of cubes needed for the whole animal. 

1.19.4 Investigate letters of the alphabet made out of 
squares or circles; e.g., AEFHILNTVY. 
Different pupils may use different rules about how to 
get the next letter (some may be enlarging, and 
others  stretching),  but  that  needn’t  matter. 
 

e.g., letter T 

1.19.5 A general method for finding the n th term involves 
looking for common differences. 
The argument here is that if the numbers go up in 
3’s, say, then the sequence must have something to 
do with the 3 times table (because the numbers in the 
3  times  table  go  up  in  3’s). 
There are 3 different sequences of integers that go up 
in  3’s:  the  3  ×  table;; the 3 × table shifted on 1; and 
the 3 × table shifted on 2. (The 3 times table shifted 
on 3 is the same as the 3 × table except that the first 
term is lost.) 
It’s  sensible  to  call  these   3n , 3 1n   and 3 2n   (or 
3 1n  ). 
(See  “Finding  the  Formula”  sheet.) 
 

Could  split  the  class  into  three  groups  and  “chant”  
each of these sequences separately; then put them 
together  to  see  that  it  makes  1,  2,  3,  4,  5,  6,  7,  8,  … 
 
“Finding the  Formula”  answers: 

1a 7t n  1b 5 1t n   
2a 3 2t n   2b 14t n   
3a 10 5t n   3b 2 22t n   
4a 5 8t n   4b 1t n   
5a 4 308t n   5b 3 2.5t n   
6a 4 997t n   6b 1000 1t n   
7a 6 1t n   7b 2t   
8a 5t n   or 

5t n    
8b 28 2t n   

 

1.19.6 There are lots of interesting investigations to do at 
this  stage;;  e.g.,  “Loops”  (see  sheet,  although  sheet  
certainly not necessary). 
 
A  similar  one  is  “Stick-Animals”. 
Like  “stick-people”,  these  are  made from short 
straight lines joined together at their ends. No loops 
are allowed. 
e.g., stick-dogs: 

 
Count the number of lines (10), the number of 
junctions  (3)  and  the  number  of  “ends”  (8). 
What is the connection between these numbers? 

Answers  to  “Loops”: 
c  increases by 1 each time, 
and 2a c  and 1b c  . 
 
 
Drawings must be clear. 
 

 
Some similarity with chemical molecular structures 
(aliphatic hydrocarbons – compounds containing 
only carbon and hydrogen atoms and no rings – 
acyclic); 
e.g., ethane is C2H6; the two carbon atoms are like 
junctions and the six hydrogens like ends, and the 
number of chemical bonds is 2+6–1=7. 
 
junctions + ends = lines + 1 

1.19.7 Quadratic, Cubic and Beyond. 
A linear sequence: nu an b   
 

2 3                   
                            
a b a b a b

a a
  

 

 
A quadratic sequence: 2

nu an bn c    

If the first differences are constant, then the 
sequence is linear, and nu an b   (see left). You 
can work out a  and b  because a  is the common 
difference and the first term is a b , or you can find 
the  “zeroth”  term  and  that  is   b . 
 
If the first differences aren’t constant, you find the 

C 
C 
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4 2 9 3
3 5

2

                    
                              
                              

a b c a b c a b c
a b a b

a

     

   

 
A similar method will work for a cubic sequence 

3 2
nu an bn cn d     (or higher polynomial 

sequences). 
 
An alternative is to write, say for a cubic, 

( 1) ( 1)( 2)
( 1)( 2)( 3)

nu a b n c n n
d n n n
     

   
. 

 

second differences.  If  they’re  constant,  then  the  
sequence is quadratic, and 2

nu an bn c    (see 
left). You can work out a , b  and c  because the 
common (second) difference is 2a  (so you can work 
out a ). You can use this value of a  together with 
the first of the first differences ( 3a b ) to find b  
and then use this with the first term ( a b c  ) to 
find c . 
 
You substitute 1n   to find a , 2n   to find b  and 
so on, but then you have to expand the brackets and 
simplify to get your final formula. 

1.19.8 Ever-Increasing Rectangles. 
Start with 3 squares in a line (shaded at the centre of 
the diagram on the right) and surround them with 
other squares (just 8 more, touching each side but 
not at the corners – the white ones on the right). 
Keep going, surrounding the shape you have at each 
stage with squares on the edges. 
Record the number of squares in each layer. 
 
(It’s  a  very  good  idea  to  shade  in  alternate  layers  so  
that  they  don’t  get  muddled  up.) 
 
Investigate different shaped rectangles. 
How many squares would be in the n th layer 
surrounding an x  by y  rectangle? 
 
The total number of squares after n  layers is given 
by 22 6 4 2( 1)( )n n n x y xy      . 
 
If you start with a 1 × 1 square ( 1x y  ), then a 
simpler pattern emerges (see right). If you look at 
the diagram at 45°, you can see that the total 
number of squares is the sum of two square numbers 
(3 × 3 = 9 grey squares and 
4 × 4 = 16 white squares). 
In general, the total number of squares after n  
layers is 2 2 2( 1) 2 2 1n n n n     . 
(The first square counts as layer 1.) 
 
Can extend by trying hexagons instead (on isometric 
paper). Or you can use other non-rectangular shapes 
made of squares. 
(It works best if the hexagons you begin with join 
side-to-side, not corner-to-corner, so if you want to 
use the paper in landscape orientation, then you need 
to have the dots the other way round from normal – 
hence  the  “unusual”  dotty  paper  included  – see 
sheet.) 

Can make nice display work. 

 
For a 1 × 3 rectangle, the n th layer has 4 4n   
squares. 
In general, for an x  by y  rectangle, the n th layer 
will have 4( 1) 2( )n x y    squares. 
A drawing makes it clear that the first term comes 
from  the  “corners”,  and  the  second  from  the  
“sides”. 
 
 
 

 
 
 
For a row of x  hexagons, the n th layer contains 
6 2( 1)n x   hexagons, and the total number of 
squares after n  layers is (3 2)( 1) (2 1)n n n x    . 
 
Or you can extend to cubes in 3-dimensions. For n  
3-dimensional  “shells”,  the  total number of cubes is 

3 21
3 (4 6 8 3)n n n   . 

1.19.9 Dots in Rectangles. 
Draw a 3 × 4 rectangle on some 0.5 cm × 
0.5 cm squared paper. (You could use square dotty 
paper,  but  it  isn’t  necessary) 
How many dots are there inside it? (Count a dot as 
any place where the grid lines cross). 
 
What about tilted rectangles? 
Try ones that are at 45° to start with. 

There  are  6  dots,  and  it’s  easy  to  generalise  that  an  
x  by y  rectangle will contain ( 1)( 1)x y   dots. 
 
 
 
 
The other sides have a gradient of –1. In general if 
one pair of sides have gradient m , the other pair will 

starting 
1 × 3 rectangle 
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Call  them  “gradient  1”  because  the  sides  with  
positive gradient have a gradient of 1. 
 
 
Try rectangles of width 2 (this means 2 diagonal 
spaces) and find a formula for the number of dots 
inside as the length of the rectangle changes. 
Find an overall formula for an x  by y  “gradient  1”  
rectangle. 
 
Extend to rectangles of gradient 2, 3 and m . 
 

have gradient 1
m ,  but  that’s  another  investigation! 

 
For  “gradient  1”  and   2y  , 3 1n x  . 
 
For  “gradient  1”  rectangles,   2 1n xy x y    . 
For  “gradient  2”,   5 1n xy x y    . 
For  general  “gradient  m ”  rectangles,  

2(1 ) 1n m xy x y     . 
Notice how all these formulas are symmetrical in x  
and y  (if you swap around x  and y  you get the 
same formula). 
 

1.19.10 Try the differences method on the Fibonacci 
sequence  1,  1,  2,  3,  5,  8,  13,  21,  … 
(Each term is the sum of the two previous terms.) 
 
Which other sequences will behave like this when 
you try to find common differences? 
 
Answer: doubling sequences like 
1,  2,  4,  8,  16,  32,  64,  …  or  5,  10,  20,  40,  80,  … 
 

Every set of differences are just the Fibonacci 
sequence again. Although the term-to-term rule is 
simple ( 1 2n n nu u u   ), the n th term is given by 

1 1 5 1 5
2 25

n n

nu
                  

, 

and this is fairly hard to prove. 
Fibonacci (1170-1250) wrote a famous book called 
Liber Abaci. 
 

1.19.11 Points and Regions. 
If 10 points are spaced evenly around the 
circumference of a circle, and every point is joined 
to every other point with a straight line, how many 
pieces is the circle divided into? 
Start with a small number of points and do BIG 
drawings (A4 paper at least). Put a cross in those 
areas  you’ve  counted  so  you  don’t  get  muddled  up.  
(If you need to re-count the same drawing, use a 
different colour for the crosses.) Work out a formula 
for the number of regions you get if you begin with 
n  points. 
 
 
The reason why is that the total number of regions 
must be 1 + number of chords + number of 
intersections inside the circle. 
There are 2

nC  chords because each chord has two 

ends and 4
nC  intersections because each is defined 

by 4 points on the circle. This gives the formula 

2 41 n nC C  , which is the same. 
 
Pupils could invent a sequence that looks as though 
it follows as simple pattern but deviates later; e.g., 

3 21
6 ( 6 29 6)n n n    goes 3, 6, 9, 13, 19, 28, … 

This is a good task to use to emphasise the need not 
to make assumptions too early on! 
 

 
This is about as far as 
you can get on an A4 
sheet of paper counting 
carefully,  but  it’s  enough  
data. 
 
Note 31 and not 32. The 
pattern isn’t 12n . 
 

4th differences turn out to be constant (1), so the 
equation is quartic. 
 

The solution is that for n  points the number of 
regions = 4 3 21

24 ( 6 23 18 24)n n n n    . 
 

Answer for 10 points is 256. (Ironically this is a 
power of 2; actually 82 .) 
 
For further details, see the sheet, which illustrates a 
different way of obtaining a formula from a number 
sequence. Although more work, this method shows 
how each term can be worked out separately. 

no. of 
points 

no. of 
regions 

1 1 
2 2 
3 4 
4 8 
5 16 
6 31 
7 57 

1.19.12 Triangles. 
(See related investigation in section 1.17.3.) 
 
If n  straight lines intersect, what is the maximum 
possible number of triangles created? 
 

Answer: any 3 lines could make a triangle, so it will 
be the number of ways of choosing 3 lines out of n ; 
in other words, 

3 21
3 6

( 1)( 2)
( 3 2 )

3!
n n n n
C n n n

 
    . 

1.19.13 Frogs. (A well-known investigation.) 
Have 4 boys and 3 girls sitting on chairs in a row 
with an empty chair in between. 
 

B B B B _ G G G 
 
They  are  the  “frogs”.  They  have  to  swap  around so 

Getting  the  minimum  number  of  moves  isn’t  always  
easy. Recording the pattern of slides and jumps 
helps to see what to do next. 
Pupils could state their conclusions about how to get 
the fewest moves; e.g., 
 The pattern should always have some symmetry; 

e.g., for 4 boys and 3 girls it is 
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that the final arrangement is 
 

G G G _ B B B B 
 
The only two types of move allowed are 
 a slide of 1 place (only) into an adjacent empty 

seat; and 
 a jump over 1 person (only) into an empty seat. 
The question is can it be done, and if so what is the 
minimum possible number of moves. 
What if the numbers of boys and girls change? 
 
Pupils can use counters or cubes (blue for boys, 
green for girls) and record the moves on squared 
paper. 
 
You can record results in a 2-way table: 
 

 number of boys b 

nu
m

be
r 

of
 

gi
rl

s g
 

 1 2 3 4 
1 3 5 7 9 
2 5 8 11 14 
3 7 11 15 19 
4 9 14 19 24 

 
(There are other sequences of moves when 1b   
that are also a minimum.) 
 
 
Notice that the table is symmetrical about the 
diagonal, and the formulas are symmetrical so that 
if you swap b  for g  you get the same formula. 
 
 
 
 
 
 
 
 
Note  that  this  doesn’t  prove  that  such  a  minimum  
sequence of moves (i.e., with nobody wasting a move 
by going backwards) will be possible; only that if it 
is this is how many moves it will take. 
 

SJSJJSJJJSJJJSJJSJS (19 moves). 
(S = slide, J = jump) 

 No  boy  or  girl  ever  needs  to  go  “backwards”. 
 Try starting by sliding what you have most of and 

then jumping and sliding (once each) the other. 
 Always jump after a slide, and jump as much as 

possible (because a jump moves each person 
twice as far as a slide but still only counts as one 
move)! 

 
Let b  = number of boys, g  = number of girls and 
n  = minimum number of moves. 
In general, 

( 1)( 1) 1n b g
bg b g

   

  
 

So when b g , 2( 1) 1n b   ; i.e., 1 less than the 
next square number. 
 
If 1b  ,then  it’s  fairly  easy  to  see  that   2 1n g  . 
First the boy slides, then the 1st girl jumps, then the 
boy slides again and the 2nd girl jumps and so on 
until the g th girl jumps ( 2g moves by then – each 
girl has jumped once and the boy has slid g  times). 
Finally the boy has to slide once to get to the end 
seat. So altogether 2 1g   moves ( g  slides and 

1g   jumps). 
 
When 1b   and 1g  ,  it’s  harder  to  justify  the  
number of  moves  necessary.  It’s  possible  to  argue  
like this: There must be a total of bg  jumps (each 
boy has to jump over or be jumped over by each 
girl). From the start, each girl has to move 1b   
places to get to her final position, and each boy has 
to move 1g   places (the +1 because of the empty 
seat they all have to pass). So the minimum total 
number of shifts must be 

( 1) ( 1)g b b g   2bg b g   . But the bg  jumps 
will make up 2bg  shifts (each jump moves a frog 2 
places), so the number of slides must be the 
remaining b g . So the total number of moves must 
be bg b g   of which bg  are the jumps and b g  
are the slides. 

1.19.14 Rectangles in Grids (see sheet). 
 

Very rich investigation. 

1.19.15 Stopping Distances (see sheet). 
(The figures have been adjusted slightly to fit a 
quadratic formula.) 
 

Answers: 
1. We imagine that the driver has a fixed (average) 
“thinking  time”,  regardless  of  the  car’s  speed,  
so  if  travelling  twice  as  fast,  he’ll  cover  twice  
the distance in that thinking time. 

 

2. 20 mph = 32 kph = 9 m/s, so 
thinking time = 6 9  = about 0.7 seconds. This 
would probably represent quite an alert driver. 

 

3. When the speed doubles, the braking distance 
goes up by a factor of about 4. This happens 

Answers (continued): 
 

4. If v  is the speed (mph), then in metres, 
thinking distance = 3

10 0.3v v ; 

braking distance =  2 2
10 52 8v v   

20.02 0.4 8v v   ; and 

overall stopping distance =  210 102 8v v   
20.02 0.1 8v v   . 

 
5. At 80 mph, overall distance = 128 metres. 

 
6. The thinking distance would be about the same, 

but the braking distance could be ten times as 
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because kinetic energy ( 21
2 mv ) is proportional 

to the square of the speed v  ( m  is the mass), 
and assuming that the brakes apply a constant 
slowing force they will need 4 times as much 
distance to reduce the kinetic energy to zero. 

 

much, or even more. 
 

7. The condition of the car (tyres, brakes, mass, 
etc.) and the driver (tired, alcohol, distractions, 
experience, skill, etc.). 

 

1.19.16 Pyramids. (A well-known investigation.) 
 
Pyramid shapes are made out of a triangle number of 
rectangular boxes. 
Each rectangle contains a number equal to the sum 
of the numbers in the two rectangles underneath it. 
The numbers in the bottom row are consecutive 
integers. 
Work out a way to predict the number in the 
rectangle on the top (the peak number) given the 
numbers at the bottom for different heights of 
pyramids. 
 
e.g., How can you predict 12 given (2,3,4) without 
working out the other numbers? 

 

  12   

 5 7  

2 3 4 
 

Hint: Start with odd numbers of rows. 
 
 
 
 
 
(See sheet of blank pyramids that may save time.) 

Answer: 12 = 4 × 3. 
In general, for a 3-row pyramid, the 
peak number = 4x , where x  is the middle number 
on the bottom row. 

 

  4x    

 2x d  2x d   

x d  x  x d  
 

This  works  even  if  the  bottom  row  aren’t  consecutive  
numbers, so long as they go up with a common 
difference ( d  above). 
 
To deal with larger pyramids (with odd numbers of 
rows), treat them as containing this three-row unit. 
The middle number of a row goes up 4 times when 
you jump up 2 rows. 
For n  (odd) rows, peak number = 12n m . 
 
Even-height pyramids ( n  even) need considering 
separately. There is no middle number at the bottom 
this time. 
In general, if x  is the smallest number in the bottom 
row (so x  is the number at the end now, not in the 
middle), and d  is the common difference along the 
bottom row, then the peak number = 
1
4 2 (2 ( 1))n x d n  . In fact this works whether n  is 

odd or even so long as x  is the smallest number in 
the bottom row. 
 

1.19.17 NEED Graphical Calculators. 
Use the ANS feature to generate different sequences; 
e.g.,  5,  8,  11,  14,  … 

Linear sequences are easy, but you can get the 
square numbers, for example, if you start with 1 and 
use the inductive formula 2

1( 1)n nu u   . 
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Making Formulas 
 

Here are some numbers. Each column of numbers is called by the name of a colour. 
 

black red yellow green purple white 
1 3 2 4 6 8 
2 6 3 7 9 11 
3 9 4 10 12 14 
4 12 5 13 15 17 
5 15 6 16 18 20 

 

There is a connection between the black numbers and the red numbers. 
If you multiply a black number by 3 you get the corresponding red number. 
We can write this as a formula or using number machines. 
Look at line 1 in the list below. 
Complete the list. 
 

 Formulas Number Machines 
   1  red = 3 × black black              × 3   red 

      2 yellow = black  + 1  yellow 
      3 green = red    green 
      4 green = black   ×     +  green 
      5 purple = yellow    purple 
      6 purple = red    purple 
      7 purple = green    purple 
      8 purple = black      purple 
   

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

9 white = purple    white 
      10 white = green    white 
      11 white = yellow      white 
      12 white = red    white 
    

 
Extra Tasks 
 
 Write some more formulas connecting these colours. 
 Try to write a formula that starts black = 
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Making Formulas          ANSWERS 
 

Here are some numbers. Each column of numbers is called by the name of a colour. 
 

black red yellow green purple white 
1 3 2 4 6 8 
2 6 3 7 9 11 
3 9 4 10 12 14 
4 12 5 13 15 17 
5 15 6 16 18 20 

 

There is a connection between the black numbers and the red numbers. 
If you multiply a black number by 3 you get the corresponding red number. 
We can write this as a formula or using number machines. 
Look at line 1 in the list below. 
Complete the list. 
 

 Formulas Number Machines 
   1  red = 3 × black black              × 3   red 

      2 yellow = b + 1 black  + 1  yellow 
      3 green = r + 1 red  + 1  green 
      4 green = 3b + 1 black  × 3  + 1  green 
      5 purple = 3y yellow  × 3  purple 
      6 purple = r + 3 red  + 3  purple 
      7 purple = g + 2 green  + 2  purple 
      8 purple = 3b + 3 black  × 3  + 3  purple 
   

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

9 white = p + 2 purple  + 2  white 
      10 white = g + 4 green  + 4  white 
      11 white = 3y + 2 yellow  × 3  + 2  white 
      12 white = r + 5 red  + 5  white 
    

 
Extra Tasks 
 
 Write some more formulas connecting these colours. 
 Write a formula that starts black = for example, black = yellow – 1 
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Finding the Formula 
 
Work out formulas that fit the numbers in these tables. 
Check that your formulas work by trying them when n = 3. 
 
1 

a n 1 2 3 4 b n 1 2 3 4 
 t 7 14 21 28 t 4 9 14 19 

 
2 

a n 1 2 3 4 b n 1 2 3 4 
 t 1 4 7 10 t 15 16 17 18 

 
3 

a n 1 2 3 4 b n 1 2 3 4 
 t 15 25 35 45 t 24 26 28 30 

 
4 

a n 1 2 3 4 b n 1 2 3 4 
 t 13 18 23 28 t 0 1 2 3 

 
5 

a n 1 2 3 4 b n 1 2 3 4 
 t 312 316 320 324 t 0.5 3.5 6.5 9.5 

 
6 

a n 1 2 3 4 b n 1 2 3 4 
 t 1001 1005 1009 1013 t 1001 2001 3001 4001 

 
7 

a n 1 2 3 4 b n 1 2 3 4 
 t 7 13 19 25 t 2 2 2 2 

 
8 

a n 1 2 3 4 b n 1 2 3 4 
 t 4 3 2 1 t 26 24 22 20 

 
 
Extra Task    Make up a table of numbers like this that fit a more tricky formula. 
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Loops 
 
This task is about crossovers, blobs and arcs. 
 

A crossover is a point where 2 
lines cross. 
 
 
 
 
 
 

A blob is an area with lines 
around the outside and nothing 
in it. 

An arc is a line joining one 
crossover to another. 

 
Look at the shapes below. 
Complete the pattern by drawing the loops in boxes 4 to 9. 
For each shape, count the number of crossovers, blobs and arcs. 
 
Write your results in the boxes underneath. Number 1 has been done already. 
 

1 
 
 
 
 
 
 

2 3 

a b c a b c a b c 

2 2 1 4 
     

4 
 
 
 
 
 
 

5 6 

a b c a b c a b c 

         

7 
 
 
 
 
 
 

8 9 

a b c a b c a b c 

         

 
What do you notice from your results? 
Can you explain the pattern in the numbers? 
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Points and Regions (Finding a Possible Formula) 
 

n  = number of points  r  = number of regions 
 
It turns out that the 4th differences are all 1, so the highest term in n  must be 41

24 n . Using a spreadsheet we can calculate this amount and subtract it from r . Then we 

work out the new 1st, 2nd and 3rd differences. This time the 3rd ones are constant, and that gives us the term in 3n . 
 

n  r  41
24 n  41

24r n  1st diff 2nd diff 3rd diff 31
4 n  

1 1 0.042 0.958    –0.250 
2 2 0.667 1.333 0.375   –2.000 
3 4 3.375 0.625 –0.708 –1.083  –6.750 
4 8 10.667 –2.667 –3.292 –2.583 –1.500 –16.000 
5 16 26.042 –10.042 –7.375 –4.083 –1.500 –31.250 
6 31 54.000 –23.000 –12.958 –5.583 –1.500 –54.000 
7 57 100.042 –43.042 –20.042 –7.083 –1.500 –85.750 
8 99 170.667 –71.667 –28.625 –8.583 –1.500 –128.000 

 

Now we have the first two terms, we calculate 4 31 1
24 4r n n  , which ought to be no more than quadratic. 2nd differences are constant at 11

121 , so we have the term in 2n . 
Finally, subtracting this we obtain a linear sequence which we can write as 3

4 1n  ,  and  we’ve  finished. 
 

n  r  
4 31 1

24 4r n n   1st diff 2nd diff 
223

24 n  4 3 2231 1
24 4 24r n n n    1st diff 

3
4 n  4 3 223 31 1

24 4 24 4r n n n n     

1 1 1.208   0.958 0.250  –0.750 1 
2 2 3.333 2.125  3.833 –0.500 –0.750 –1.500 1 
3 4 7.375 4.042 1.917 8.625 –1.250 –0.750 –2.250 1 
4 8 13.333 5.958 1.917 15.333 –2.000 –0.750 –3.000 1 
5 16 21.208 7.875 1.917 23.958 –2.750 –0.750 –3.750 1 
6 31 31.000 9.792 1.917 34.500 –3.500 –0.750 –4.500 1 
7 57 42.708 11.708 1.917 46.958 –4.250 –0.750 –5.250 1 
8 99 56.333 13.625 1.917 61.333 –5.000 –0.750 –6.000 1 

 

So we have 4 3 223 31 1
24 4 24 4 1r n n n n      or 4 3 21

24 ( 6 23 18 24)r n n n n     . Using this formula we can predict values of r  for larger n . 

n  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
r  1 2 4 8 16 31 57 99 163 256 386 562 794 1093 1471 1941 2517 3214 4048 5036 
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Rectangles in Grids 
 
How many ways are there of fitting an a b  rectangle into an x y  grid, where a , b , x  and y  are 
all positive integers, and max( , ) min( , )a b x y ? 
Every vertex of the rectangle must lie on a grid point, and the sides of the rectangle must be parallel 
to the grid lines. 
 

x  columns 
 

 y  rows 
 
 
 Start with rectangles that are 2 1 . 

How many ways can you fit these rectangles into an x y  grid? 
 
Think about where the middles of the rectangles will go. 
There will be y  rows of 1x   “horizontal”  rectangles. 
There will be x  columns of 1y   “vertical”  rectangles. 
So the total number of rectangles, n , will be ( 1) ( 1) 2n y x x y xy x y       . 
e.g., for 2x  grids, 3 2n x  ; 
  for 3x  grids, 5 3n x  ; etc. 
 

 Now try rectangles that are 1a . 
Similar reasoning gives ( 1) ( 1) 2n y x a x y a xy ax ay x y           . 
This works provided 1a  . 
 

 Now try rectangles that are a b . 
This time, 

( 1)( 1) ( 1)( 1)
2 2 2 2 2

n y b x a x b y a
xy ax bx ay by ab a b x y

         

          
, assuming a b . 

 
 
It’s  possible  to  extend  this  investigation  to  3  dimensions,  where  you’re  fitting  little  cuboids  into  big  
cuboids (lattices). 
 
The number of ways of fitting an a b c   cuboid into an x y z   cuboid is 

( 1)( 1)( 1)
( 1)( 1)( 1)
( 1)( 1)( 1)
( 1)( 1)( 1)
( 1)( 1)( 1)
( 1)( 1)( 1)

n z c y b x a
z c y a x b
z b y a x c
z b y c x a
z a y b x c
z a y c x b

      

      

      

      

      

      

 

 
This assumes that max( , , ) min( , , )a b c x y z  and that none of a , b  and c  are equal to each other 
(otherwise symmetry will mean that there are fewer ways). 
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Stopping Distances 
 
These are average stopping distances for an ordinary car on a good road surface. 
 

speed 
(mph) 

thinking distance 
(m) 

braking distance 
(m) 

overall stopping 
distance (m) 

20 6 8 14 
30 9 14 23 
40 12 24 36 
50 15 38 53 
60 18 56 74 
70 21 78 99 

 
 
Answer these questions. 
 

1. Thinking distance is the time it takes for the driver to realise he/she needs to press the brake 
pedal and to get his/her foot onto the pedal. 
It’s  proportional  to  speed,  so  it  doubles  as  the  speed  doubles. 
Why do you think that is? 

 
2. What  “reaction  time”  do  these  numbers  assume  that  the  driver  has? 

Would you react that quickly? 
 
3. Braking  distance  isn’t proportional to speed. 

What happens to braking distance as the speed goes up? 
Why do you think that is? 

 
4. Find formulas for 

 the thinking distance in terms of the speed; 
 the braking distance in terms of the speed; 
 the overall stopping distance in terms of the speed. 

 
5. Some people think that the speed limit on motorways and dual carriageways should be 

raised to 80 mph. 
Use your formula to predict the overall stopping distance at 80 mph. 

 
6. How much more do you think these figures would be in wet or icy conditions? 
 
7. In real life, what factors apart from speed and weather conditions will affect the overall 

stopping distance? 
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