1.24 Polynomial Graphs

- Some pupils may think that all graphs that come from algebra are straight lines and that you can't get a curve from an algebra equation. It may be an eye-opener to see that maths can produce graphs that look like "real-life" graphs with all their bumps and turns. This makes for a good opportunity to discuss the principles of mathematical modelling.
 - **1.24.1** Mathematical Modelling. Projectiles.

The equation $h = 12t - 5t^2$ models the motion of a stone thrown off the top of a cliff (ignoring air resistance, size and shape of stone, curvature of the earth, Einstein's theory of relativity, etc.).

h is the height of the stone in metres above the top of the cliff at time t seconds after letting go of it. Draw a graph of h against t for the first 4 seconds (do a table of numbers first).

- 1. When does the stone reach the maximum height?
- 2. What is the maximum height?
- 3. When is the stone level with the cliff top?
- 4. The bottom of the cliff drop is 26 m. When does the ball land?
- 5. When is it going fastest?
- **1.24.2** Pupils could investigate how the gradients of curved graphs vary as x varies.

Could try to draw the gradient functions on a sheet of different functions f(x) (see sheet).

1.24.3 NEED a computer graph-plotting program.

Investigate the shape of the graphs of these functions with different numbers instead of the letters a and b

Try a positive/negative and b positive/negative. Sketch the results in a table (see right) for each function.

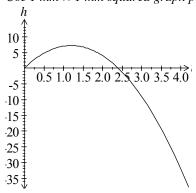
Could split up the class so that different pupils/groups cover different functions.

$$y = ax + b$$

$$y = ax^{2} + b$$

$$y = a\sqrt{x} + b$$

$$y = a\sqrt{x} + b$$

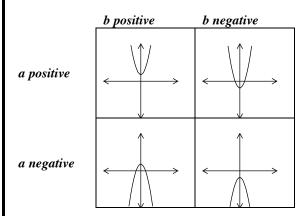

$$y = ax^{3} + b$$

1.24.4 People graphs. Everyone stand up.

I want you to be y = 0 (arms out horizontally). Now

be
$$y = x$$
, $y = -x$ (aeroplanes!), $y = x^2$, $y = -x^2$, $y = x^3$, etc.

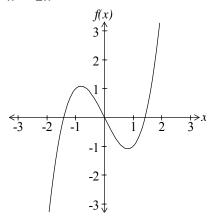
Use 1 mm × 1 mm squared graph paper

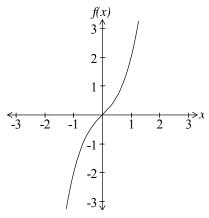

Answers:

- 1. After 1.2 s
- 2. 7.2 m
- 3. After 2.4 s
- 4. After 3.78 s (2 dp)
- 5. As it's just about to hit the bottom (gradient has largest value although negative); the vertical speed on impact is about 26 m/s.

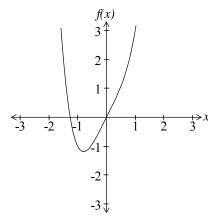
This could lead to differential calculus (see several sheets that do this with $y = x^2$ and $y = x^3$).

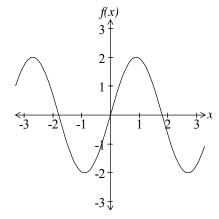
Answers:

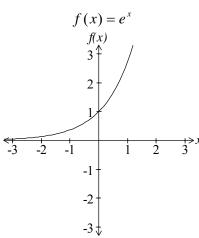

$$e.g.$$
, for $y = ax^2 + b$,

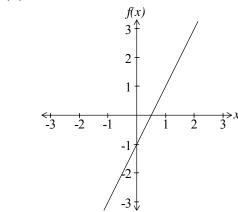

An interesting way of reviewing knowledge of the shapes of graphs!

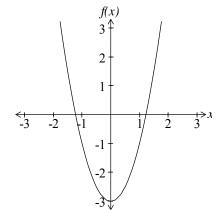
To do $y = \sin x$ requires team-work!

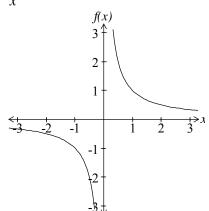

$$f(x) = x^3 - 2x$$

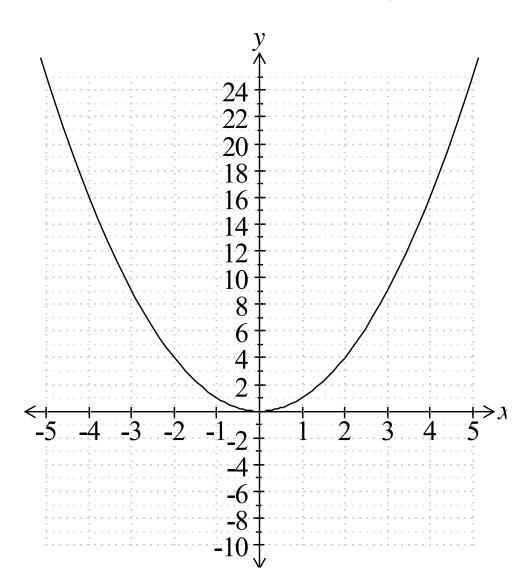

$$f(x) = x^3 + x$$


$$f(x) = x^4 + 2x$$


$$f(x) = 2\sin 100x$$


$$f(x) = e^x$$


$$f(x) = 2x - 1$$

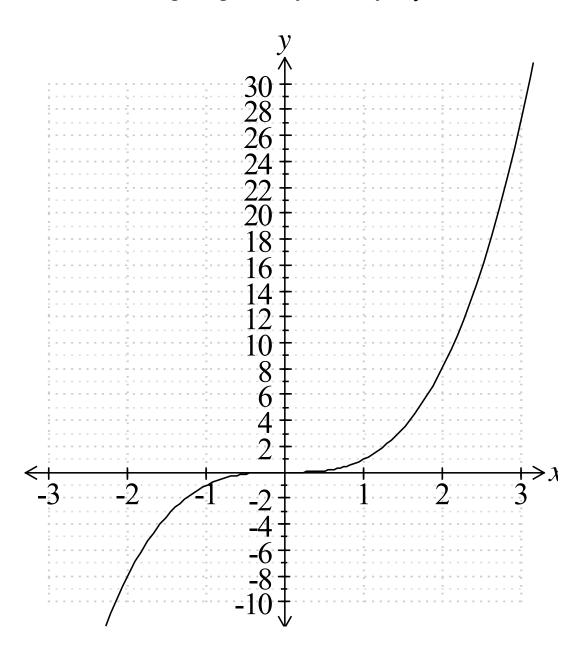


$$f(x) = 2x^2 - 3$$

$$f(x) = \frac{1}{x}$$

Remember that the gradient of a straight line between two

points A
$$(x_A, y_A)$$
 and B (x_B, y_B) is $\frac{\Delta y}{\Delta x} = \frac{y_B - y_A}{x_B - x_A}$.


Fill in the table on the next page.

Then plot the *gradient function* on the graph above.

What is the equation of the gradient function graph?

Can you explain your results?

point	nearby point		gradient	best gradient
(-5, 25)	(-4.9,	24.01)	-9.9	
	(-4.99,)		-10
	(-4.999,)		
(-4, 16)	(-3.9,)		
	(-3.99,)		
	(,)		
(-3,)	(,)		
	(,)		
	(,)		
(-2,)	(,)		
	(,)		
	(,)		
(-1,)	(,)		
	(,)		
	(,)		
(0, 0)	(0.1,	0.01)		
	(0.01,)		
	(,)		
(1,)	(1.1,)		
	(1.01,)		
	(,)		
(2,)	(2.1,)		
	(,)		
	(,)		
(3,)	(,)		
	(,)		
	(,)		
(4,)	(,)		
	(,)		
	(,)		
(5,)	(,)		
	(,)		
	(,)		

Fill in the table on the next page.
Then plot the *gradient function* on the graph above.
What is the equation of the gradient function graph?

Can you explain your results?

point	nearby point		gradient	best gradient
(-3, -27)	(-2.9,	-24.39)	26.11	
	(-2.99,)		27
	(-2.999,)		
(-2,)	(-1.9,)		
	,	,		
	(,			
	(,)		
(-1,)	(,)		
	(,)		
	(,)		
(0,)	(0.1,)		
	(,)		
	(,)		
(1,)	(,)		
	,)		_
	(,	,		
	(,)		
(2,)	(,)		
	(,)		
	(,)		
(3,)	(,)		
	(,)		
	(,)		
		•		