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2.7   Pythagoras’ Theorem 

 

 You could say that this is really “Trigonometry” because it’s to do with solving triangles. 

 It’s a good opportunity to revise circles, because there are so many good problems applying Pythagoras’ theorem to 

circles, arcs, spheres, etc. (see later). 

 Hypotenuse is the side opposite the right-angle. This may be a better definition than “the longest side”, because this 

way it’s clear that there isn’t one in a non-right-angled triangle – any scalene triangle and some isosceles triangles 

will have a “longest” side.) 

 Instead of writing 2 2 2
a b c   or 2 2 2

a b c   and having to remember which letter is the hypotenuse, pupils could 

write it as 
2 2 2

hyp a b  . 

 The converse of Pythagoras is sometimes omitted, but provides a good opportunity to discuss the concept of 

“converse” and to think of examples of when the converse of something is true and when it isn’t. If A and B are the 

following statements, A = “the triangle is right-angled”, B = “the square of the hypotenuse is equal to the sum of the 

squares on the other two sides”, then Pythagoras’ theorem is the conclusion that A implies B ( A B ). The 

converse is that B A , that any triangle in which statement B is true must be right-angled. So in this case A B  

(A is equivalent to B), but in general if A B , B doesn’t necessarily imply A. One example is if A = “the triangle 

is right-angled” and B = “the shape has exactly three sides”. Here A B  but B  A  because although all right-

angled triangles have three sides, not all triangles are right-angled. 

 In three dimensions 2 2 2 2
a b c d   . This makes sense by seeing that 2 2

b c  is the square of the hypotenuse of 

the right-angled triangle in the plane defined by sides b  and c  (the plane perpendicular to side d ). Then applying 

2-d Pythagoras’ theorem again gives the result. 

(You could just as well start with c  and d  or with b  and d .) 

 Pythagoras’ Theorem is so powerful because it is readily applied to more complicated circumstances than a single 

right-angled triangle; e.g., any non-right-angled isosceles triangle can be cut into two congruent right-angled 

triangles. 

 In solving right-angled triangles, it’s helpful to distinguish between finding the hypotenuse (square, add, square root) 

and finding one of the shorter sides (sometimes called legs) (square, subtract, square root). 

 

2.7.1 NEED 1 cm × 1 cm squared dotty paper (see section 

2.1). Tilted Squares. 
We are going to draw tilted squares on square dotty 

paper so that each vertex lies on a dot. 

Start by drawing a “
2

1

 
 
 

 square”, where the lowest 

side goes 2 along and 1 up (gradient of 1

2
). Work out 

the area. 

 

Try other 
1

x 
 
 

 squares and look for a pattern. 

 

 

 

Then try 
x

y

 
 
 

 squares. 

Then focus in on the right-angled triangle 

“underneath” the square. What are these results 

telling us about the sides of the triangle? 

 

Answer: 

 

If pupils get stuck drawing the squares, they can say 

“2 along-1 up, 1 along-2 up, 2 along-1 down, 1 

along, 2 down” as they go around the square. 

 

 

area = 5 cm2. 

There are various ways of cutting up the square. 

(Some pupils may prefer to measure the sides with a 

ruler as accurately as they can and find the area that 

way, although it may be less “elegant”.) 

area = 2
1x   

 

area = 
2 2

x y  

 

 

 

If the area of a square is 36 cm2, then how long are 

the sides? etc. 

 

2.7.2 See if Pythagoras’ Theorem works for all triangles 

(see “Triangles and Tilted Squares” sheet). 

Answers: 

A obtuse-angled (25 > 9 + 10) 

The square on the longest side equals the sum of the 

squares on the other two sides only if the triangle is 

right-angled. 

If it is obtuse-angled, then the square on the longest 
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B right-angled (26 = 8 +18) 

C acute-angled (16 < 13 + 13) 

D right-angled (25 = 5 + 20) 

E obtuse-angled (9 > 2 + 5) 

 
Try other shapes on the sides of right-angled 

triangles; e.g., semicircles or equilateral triangles. 

 

side (the one opposite the obtuse angle) is greater 

than the sum of the squares on the two other sides. 

If it is an acute-angled triangle, then the square of 

any of the sides is smaller than the sum of the 

squares on the other two. 

 

Any shape will work provided that the shapes on 

each side are mathematically similar. This 

corresponds to multiplying the equation 
2 2 2

hyp a b   by a constant. 

 

2.7.3 How many different sized squares can you draw on a 

3 × 3 dotty grid if every vertex has to lie on a dot? 

What if you use a larger square grid? 

 

(See the similar investigation using triangles and 

quadrilaterals in “Polygons” section.) 

 

The pattern is broken at n = 8 because the tilted 

squares with sides of gradient 3

4
  and 4

3
 have 

sides with length 5 units, matching one of the untilted 

squares already counted. This will happen whenever 

you get Pythagorean Triples. 

 

Answer: 3 

For an n n  grid of dots, 

 

n 
no. of different sized 

squares 

1 0 

2 1 

3 3 

4 5 

5 8 

6 11 

7 15 

8 18 (yes) 
 

 

2.7.4 Why is this shape not a regular octagon? 

 
 

Answer: 

Although all the interior angles are all 135°, there 

are four sides of unit length and four “diagonal” 

sides of longer length 2  units. 

 

 

This question aims to confront a common 

misconception. 

2.7.5 Proof: there are a vast number of them. 

The simplest is probably the one equating areas in 

the diagram below (see right). 

 

 
 

 

 

There are a large number of different proofs of 

Pythagoras’ Theorem: pupils could search on the 

internet for other proofs. 

 

This is a square with sides of length c  inside a 

square with sides of length a b . 

The area of the large square can be worked out in 

two different ways, and they must give the same 

answer. 

 

First method: area = 
2 2 2

( ) 2a b a ab b    . 

(If pupils are not familiar with this result from 

algebra, you can divide up the large square into two 

congruent rectangles, each of area ab , and two 

squares of different sizes, 2
a  and 2

b .) 

 

Second method: add up the areas of the smaller 

square and the four congruent right-angled triangles; 

so 

area = 
2 21

2
4 2c ab c ab    . 

So 2 2 2
2 2a b ab c ab    , and therefore 

2 2 2
a b c   (Pythagoras’ Theorem). 

 

2.7.6 Pythagorean Triples. 

The lengths of the sides of integer right-angled 

triangles. 

(3,4,5); (5,12,13) and (7,24,25) are the simplest. 

Any numbers ( 2pq , 
2 2

p q , 
2 2

p q ) will always 

Some pupils could write a BASIC (or similar) 

computer program to find Pythagorean Triples. 
 

A “primitive” Pythagorean Triple is one that isn’t 

just a scaling up of a similar smaller triangle by 

multiplying all the sides by the same amount; i.e., it’s 

a  

b  

c  
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work (where p  and q  are integers and p q ). 

 
 

A method equivalent to this for generating 

Pythagorean triples is to add the reciprocals of any 2 

consecutive odd or consecutive even numbers. The 

numerator and denominator of the answer (whether 

simplified or not) are the two shorter sides of a right-

angled triangle; e.g.,  
71 1

6 8 24
  , giving the (7,24,25) triangle. 

 

one in which the sides are pairwise co-prime. To get 

only these, p  and q  must be co-prime and of 

opposite “parity” (one odd, the other even). 
 

You can prove that these sides satisfy Pythagoras’ 

formula by squaring and adding: 
2 2 2 2

4 2 2 4 2 2

2 2 2

( ) (2 )

2 4

( )

p q pq

p p q q p q

p q

 

   

 

 

 

This works because 
2 2

1 1 21 1

1 1 1 1

p p p

p p p p

  

   
   , as 

above where 1q  . 

 

2.7.7 Pythagorean Triples. 

1. Investigate the factors of the numbers in 

“primitive” Pythagorean triples. 

2. Investigate the product of the two legs of a 

Pythagorean triple. 

Try for different Pythagorean triples. 

3. Investigate the product of all three sides of a 

Pythagorean triple. 

Try for different Pythagorean triples. 

 

Answers (continued): 

3. The product of all three sides is always a 

multiple of 60. To show this, in addition to the 

above argument we need to show that 
2 2 2 2

( )( )pq p q p q   is a multiple of 5. 

If either p  or q  is a multiple of 5, then clearly 

the whole thing will be. If neither is, then 

5 1p r   or 5 2p r   and  

5 1q s   or 5 2q s  . When you multiply out 

2
p  and 

2
q , you find that they are either 1 more 

or 1 less or 4 more or 4 less than multiples of 5. 

So it is always the case that either 
2 2

p q  or 

2 2
p q  is a multiple of 5, so the whole thing 

must be. 

 

Answers: 

1. In “primitive” triples (see above), the largest 

number is always odd, and of the other two one 

is odd and one is even. One of the sides is always 

divisible by 2, one by 3 and one by 5 (see below). 

(These may all be the same side; e.g., 60 in 11, 

60, 61.) 
 

2. The product of the two legs is always a multiple 

of 12 (or, equivalently, the area is always a 

multiple of 6). (Interestingly, this area can never 

be a square number.) 

You can prove this using the expressions above:  

area = 
2 2 2 21

2
2 ( ) ( )pq p q pq p q     . 

Here, either p  is even or q  must be, so pq  is a 

multiple of 2. If p  or q  are multiples of 3, then 

the whole thing will be a multiple of 6. If neither 

p  nor q  is a multiple of 3, then 3 1p r   and 

3 1q s  , so 
2 2

p q  must be a multiple of 3 

(multiply out 
2

p  and 
2

q  and the “+1’s” cancel 

out), so the whole area is still a multiple of 6. 

Because the product of the legs is 
2 2

2 ( )pq p q , 

then this number will be a multiple of 12. 
 

2.7.8 Fermat’s Last Theorem. 

We have some solutions to 2 2 2
a b c   where a , 

b  and c  are positive integers (see Pythaogrean 

Triples above). 

Try to find solutions to these equations: 
3 3 3

a b c   
4 4 4

a b c   
 

Pupils could look for solutions to 2 2 2 2
a b c d   . 

 

Fermat (1601-1665) believed that there were no 

solutions to the equation n n n
a b c   where 2n   

and a , b  and c  are positive integers. He claimed to 

have a proof but never wrote it down. It has since 

been proved using highly complicated maths. 
 

There are many “Pythagorean Quadruples”; e.g., 

(1, 2, 2, 3); (1, 4, 8, 9); (9, 8, 12, 17). 

This time, any numbers ( 2pr , 2qr , 
2 2 2

p q r  , 

2 2 2
p q r  ) work, where , , 0p q r  . 

2.7.9 NEED keyboard diagrams (see sheets). 

Keyboard Typing. 

Imagine typing words with 1 finger. Say that each 

key is 1 cm × 1 cm. How far does your finger have to 

move to type certain words? 

(Calculate from the centre of each key.) 

e.g., a word like FRED is easy. 

What about HELP? 

What four-letter word has the longest distance on the 

keyboard? 

A different way of thinking of “word length”. 

(The keys on the diagram are 1.5 cm × 1.5 cm to 

discourage measuring.) 

 

 

Answers: 

FRED = 3 cm (F-R, R-E and E-D) 

 

HELP = 3.64 + 6.58 + 1.12 = 11.34 cm 

(using Pythagoras’ Theorem) 
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 ZONE = 14.58 cm, but there may be longer words. 

 

2.7.10 Two football players start side by side. They each 

run 4 m in a straight line, turn 90° to the right and 

run another 3 m, again in a straight line. What is the 

furthest apart they could now be? 

 

 

 

Answer: 10 m, if they started facing in opposite 

directions. (Imagine two 3-4-5 right-angled triangles 

meeting at the players’ starting point.) 

 
 

2.7.11 A straight road contains a row of parked cars all of 

width 1.5 m and length 4 m. If one of the cars has a 

turning circle of 10 m, how much space will it need 

in front of it so that it can pull out without having to 

reverse? 

 

What assumptions do you have to make? 

(A turning circle of 10 m kerb-to-kerb means that the 

car can just manage a U-turn at slow speed in a street 

10 m wide.) 

 

Answer: 

In the diagram to the right, the distance from the 

centre of the turning circle to the offside of the car is 

5 – 1.5 = 3.5 m. Applying Pythagoras’ Theorem, 
2 2 2

5 3.5y   , giving y  = 3.6 m, measured from 

the mid-point of the length of the car. The necessary 

distance in front of the car is therefore 3.6 – 2 = 1.6 

m. 

 

 
We have assumed that the cars are parked exactly in 

line, that both cars have the same width and that the 

driver gets full right-lock as soon as the car begins 

to move. 

 

2.7.12 In the diagram below, find the shaded area in terms 

of x . 

 
 

 

Answer: 

If the large circle has radius R  and the small circle, 

r , then the shaded area = 
2 2 2 2

( )R r R r     . 

But by Pythagoras’ Theorem, 2 2 2
x R r  , so the 

shaded area = 2
x . 

 

2.7.13 A ladder of length 13 feet is standing upright against 

a wall. If the top end slides down the wall 1 foot, 

how far out from the wall will the bottom end move? 

Answer: 

5 feet (a 5-12-13 right-angled triangle) 

 

2.7.14 A cable 1 km long is lying flat along the ground with 

its ends fixed. If its length is increased by 1 m but the 

ends are still fixed 1 km apart, how high up can the 

mid-point of the cable be raised before it becomes 

taut? (Assume the cable doesn’t stretch or sag.) 

 

Answer: 22.4 m (a surprisingly large amount). 

The shape produced is a (very) obtuse-angled 

isosceles triangle. Each half is a right-angled 

triangle with hypotenuse 500.5 m and base 500 m. 

Calculating the third (vertical) side gives the answer. 

 

2.7.15 In the diagram below, C1 is a semicircular arc 

centred on B and C2 is a quarter-circular arc centred 

on E. Prove that the area of the shaded lune between 

C1 and C2 is equal to the area of the square BCDE. 

Answer: 

Let BC = r . 

Then the area of the square BCDE = 2
r . 

Area of semicircle C1 = 
21

2
r , and area of quadrant 

ACE = 
2 21 1

4 2
( 2 )r r  . 

5 

4 

y 

1.5 

3.5 

x  
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Area of triangle ACE = 
2 21

2
( 2 )r r  (since angle 

AEC = 90°, angle in a semicircle), so 

area of segment = 
2 21

2
r r  . 

Therefore area of shaded lume = 
2 2 2 21 1

2 2
( )r r r r     = area of square BCDE, 

as required. 

 

This and other similar results were discovered by 

Hippocrates of Chios (470-410 BC). 

2.7.16 A rope is attached to the top of a vertical pole and at 

the bottom 1 m is lying on the ground. When the end 

of the rope is pulled along the ground until it is taut, 

its end is 5 m from the base of the pole. How long is 

the rope and how high is the pole? (The rope doesn’t 

stretch.) 

 

Answer: The rope is 13 m long and the pole is 12 m 

high (5, 12, 13 triangle). 

If h  is the height of the pole, then 
2 2 2

( 1) 5h h   , 

and solving this equation gives these values. 

 

2.7.17 A narrow passageway of width 1 m contains two 

ladders leaning against the walls. Each has its foot at 

the bottom of one wall and its top at the top of the 

other wall. If the walls have heights 2 m and 3m, 

how high above the ground is the point where the 

ladders cross? 

 

 

Answer: 1.2 m 

One approach is to model the ladders as segments of 

the lines 3y x  and 2 2y x   . Solving 

simultaneously gives 0.4, 1.2x y  . 

 

Alternatively, you can use similar triangles. Using 

the letters as defined on the right, 

y b

x d
  and 

y a

d x d



, so eliminating y, 

( )bx a d x

d d


  so that 

ad
x

a b



 and 

ab
y

a b



, so 

the answer to the original question didn’t depend on 

d  (1 m). 

 

 

 

 

 

 

 
 

Similar-looking problems where the lengths of the 

ladders are given instead of vertical heights are 

much harder, often leading to quartic equations. 

2.7.18 A piano in a cuboid crate has to be moved round a 

right-angled corner in a corridor of width 2 m. If no 

part of the crate is lifted off the floor, what are the 

dimensions of the biggest crate that will just go 

round the corner? Assume that the floor is perfectly 

horizontal and the walls perfectly vertical. 

 

If the crate just fits, then its sides will be 
2

2
 by 

2 , so it’s area will be 1 m2. 

 

Answer: The tightest squeeze will happen when the 

crate is positioned as below. 

 
 

2.7.19 A border of 1 m width around a rectangular garden is Answer: 

A C 
B 

E D 

C2 

C1 

a  

b  

x  

y  

d  

1 

1 
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covered with wet cement. You have two 98 cm long 

narrow planks of wood. Can you use them to bridge 

across the cement from the outside to the inside? 

 
 

Therefore, 1
2 2 2

l l
  , giving 

3
1

2 2

l
 , so 

2 2
0.94

3
l    m (2 dp). 

But you would need to allow a bit for overlapping of 

the planks and the grass. 

 

Just, if you put them across at the corner. If l  is the 

length of the planks, and they just meet in the 

arrangement shown below, then the distances 

marked are as shown. 

 

 
 

 

2.7.20 Four identical apples of diameter  8 cm have to be 

fitted into a cubical box. What is the smallest box 

that will do? Assume that the apples are perfect 

spheres. 

 

 

You can see that the diagonal of the box has length 

4 2 4 4 4 2   , so the sides of the box have 

length 
8

(1 2) 4 2 8
2

    = 13.7 cm. 

 

Answer: 

The apples need to be stacked “tetrahedrally” so 

that there are 2 along the diagonal of the bottom of 

the box and 2 along the other diagonal in the top half 

of the box. 

 

 
 

2.7.21 Which fits better, a square peg in a round hole or a 

round peg in a square hole? 

 

Answer: 

A round peg in square hole occupies 

 

2

2
79%

42

r

r

 
   of the square, and this is better 

than a square peg in round hole, which occupies 

only 
 

2
2

2

2

2
64%

r

r 
   of the circle. 

 

2.7.22 I am standing in a rectangular hall and my distances 

from three of the corners are as shown below. How 

far must I be from the fourth corner? 

 

 
 

Answer: 

Let a  and b  be as shown below. 

 
 

Then using Pythagoras’ theorem in the top two right-

angled triangles, we can equate expressions for the 

vertical dashed line, giving 2 2 2 2
6 10a b   . 

2 2

l

 2

l

 

4 

10 m 6 m 

9 m 

x  

10 m 6 m 

9 m 

x  

a  b  
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Similarly for the bottom part of the diagram, 
2 2 2 2

9 a x b   , and subtracting these equations 

leaves 2 2 2 2
9 6 10x   , and solving this gives 

145 12.04x    m. 

 

2.7.23 How big is the smallest circle which you can fit a 2 

cm by 4 cm rectangle into? 

 

Answer: 

The widest length in the rectangle will be the 

diagonal, which is 2 2
2 4 20   cm, so that will 

have to be the diameter. So the radius of the circle 

will be 1

2
20 5 2.24   cm. 

 

 
 

 

 

 

 

 

Triangles and Tilted Squares 
 

Plot these triangles on axes going from 0 to 20 both horizontally and vertically. 

(With a bit of overlapping, they will all fit onto one set of axes.) 

 

Label them A to E, and note what kind of triangle each one is. 

 

Draw tilted squares on each side and work out their areas. 

Look at your results for each triangle. 

What do you notice? 

 

A (10, 7) (9, 4) (6, 4) 

B (9, 15) (4, 14) (7, 17) 

C (14, 7) (17, 5) (14, 3) 

D (14, 16) (18, 14) (17, 12) 

E (2, 3) (3, 5) (3, 2) 
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Q W E R T Y U I O P 

 A S D F G H J K L  

  Z X C V B N M ,  
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Q W E R T Y U I O P 

 A S D F G H J K L  

  Z X C V B N M ,  

Q W E R T Y U I O P 

 A S D F G H J K L  

  Z X C V B N M ,  


