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2.10   Volume 

 

 If you’re using the words “solid” for 3-d and “shape” for 2-d, pupils need to realise that, of course, you can work out 

volumes of liquids and gases as well as solids. (In particular, volumes of solids and liquids are more or less constant 

whereas gas volume depends on pressure, temperature, etc. and not just on the mass.) Capacity is just the volume of 

space (or air) inside a “hollow solid”. 

 There is some overlap with section 2.15, but the following is pretty essential: 
 

   ÷1000  ÷1000  

   →  →  

cm3 = ml  litre  m3 

   ←  ←  
   ×1000  ×1000  

 

 Some opportunity to handle and count cubes is essential in the early stages of this topic. 

Cubes which can be fitted together to make larger cubes/cuboids/etc. are ideal. 

 

2.10.1 Words that mean different things in maths from what 

they mean in ordinary life or other subjects. 

Think of some examples. 

 

In maths/science, volume means how much space 

something takes up or how much space there is 

inside something (sometimes called capacity). 

 

Take-away, difference, product, factor, prime, 

negative, positive, sign, odd, even, root, index, 

power, improper, rounded, interest, expression, 

identity, solution, term, subject, acute, obtuse, reflex, 

face, net, square, plane, prism, compasses, 

translation, sketch, origin, arc, chord, similar, 

tangent, mean, range, raw, frequency, certain, 

impossible, independent, etc. 

Also volume (loudness in science, vague “amount” 

in common usage, or can refer to a book). 

 

2.10.2 NEED cubes, common cuboid objects. 

How many cubes make up this cube/cuboid? 

You can show 2 × 2 × 2 and 2 × 3 × 4 etc. cuboids to 

see that volume means the number of cm3 that will 

fit inside. Hence multiply the three dimensions to 

find the volume. 

 

Find the volume, by measuring the dimensions, of 

common objects: maths book, video cassette, 

briefcase, locker, room? 

Start by estimating how many cm3 would go into it. 

 

If the cubes you’re using aren’t cm3 you can say that 

you’re imagining they are. 

Stick with integer lengths at this stage. 

 

This is really 

volume = area of one layer × number of layers. 

 

typical values: (pupils tend to underestimate) 

exercise book: 100 cm3; textbook: 1000 cm3 (we’re 

learning a litre of maths this year!) 

video cassette: 400 cm3; briefcase: 30 litres; locker: 

70 litres (roughly the volume of a human being – 

some pupils will fit inside their lockers, but don’t try 

it!). 

 

2.10.3 If we woke up tomorrow and everything had doubled 

in size, would there be any way to tell? (Poincaré, 

1854-1912, originally posed this famous riddle.) 

 

More precisely we mean if every length doubled (so 

5 cm became 10 cm and so on), because of course 

that would mean that area had become four times as 

much and volume eight times as much. 

 

It depends whether other things besides length 

changed as well. Presumably things would look the 

same because our own eyes and bodies would be 

twice as large (so perspective effects would be the 

same), but if there were no corresponding increase 

in mass (for example) it would be easy to detect, 

because, for example, gravity would be weaker. To 

make it work, sub-atomic forces would have to 

increase too. 

 

2.10.4 NEED A4 1 cm × 1 cm squared paper, scissors, 

sticky tape. Maximum Volume from a piece of 

paper. 

 

 

This size makes for easier calculations than using 
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Cut out an 18 cm by 24 cm rectangle from a sheet of 

A4 paper. 

We want to make an open box (no lid) out of this 

paper that has the maximum possible volume. We’ll 

cut out squares from each corner and see what is the 

maximum volume we can get. 

(Imagine you were collecting sweets in it from a big 

boxful at the front of the room!) 

 
(diagram not to scale) 

 

Start by cutting off 1 cm × 1 cm squares from each 

of the four corners. Fold up the sides to make a very 

shallow box. 

 

 

Making a cone out of the paper would probably give 

a smaller volume. (If you cut out a quadrant of 

radius 18 cm you could roll this up into a cone of 

slant height 18 cm and base radius 18 4  = 4.5 cm, 

so the volume would be about 350 cm3.) 

 

actual A4 size. 

 

 

Let x  cm be the length of the side of the square cut 

off. Then we get the following results: 

 

x dimensions of box volume (cm3) 

1 16 × 22 × 1 352 

2 14 × 20 × 2 560 

3 12 × 18 × 3 648 

4 10 × 16 × 4 640 

3.4 11.2 × 17.2 × 3.4 655 

 

Could plot a graph of volume against x , but you can 

see from the numbers that the maximum is between 2 

and 4. Trial and improvement gives 3.4x   cm (1 

dp). 

 

It’s possible to get the same answer using calculus: 

(24 2 )(18 2 )V x x x  
3 2

4 84 432x x x   , so 

differentiating, 
2d

d
12 168 432 0V

x
x x     for stationary points, 

and solving this quadratic gives 3.4x   as the only 

solution in the range 0 9x  . 

 

2.10.5 NEED interlocking cubes. 
Minimum Surface Area for a given Volume (the 

above problem in reverse). 

This could be introduced as the problem of wrapping 

up a number of identical cubes so as to use the 

minimum amount of wrapping paper. “What’s the 

best shape for a packet of sugar lumps?” would be a 

more open-ended problem. 

 

 

 

 

 

Think of a situation where maximum or minimum 

surface area is important. 

 

Keeping warm (huddle up – minimise surface area); 

getting a sun-tan (spread out – maximise surface 

area). 

Surface tension causes soap bubbles to minimise 

their surface area (pupils may have seen a 

demonstration in Science). 

Lungs have a very large surface area (over 

100 m2) because that’s where oxygen is absorbed. 

Granulated sugar dissolves faster than sugar lumps 

because the water molecules have more exposed 

sugar to bump into. 

The surface area of a solid is the area of its net 

(excluding any “tabs”), if it has one. (A sphere has a 

surface area although it has no net.) 

 

“Best” would mean not just the minimum amount of 

cardboard; you’d have to consider how the packet 

would look, how easy it would be to fit the design 

and details on the packet, how stable it would be, etc. 

 

The minimum surface area is obtained when the 

cubes make a solid that is nearest to a cube in shape 

(see below). 
 

no. of 

cubes 
max surface 

area 

min surface 

area 

24 1 × 1 × 24:   98 2 × 3 × 4:   52 

27 1 × 1 × 27: 110 3 × 3 × 3:   54 

48 1 × 1 × 48: 194 3 × 4 × 4:   80 

64 1 × 1 × 64: 258 4 × 4 × 4:   96 
 

Maximum surface area comes from arranging the 

cubes in a long line ( a prism with cross-section 1 × 

1). In fact, it doesn’t affect the surface area if the 

“line” has bends in it, but then the solid isn’t a 

simple cuboid any more. 

 

In general, for n  cubes, the maximum surface area 

= 4 2n  . 

2.10.6 Length comparisons versus volume comparisons. 

People often choose length comparisons to make 

something seem a lot and volume comparisons to 

make something not seem that much. 

 

How many 10 p coins would you need to make a pile 

all the way to the top of Mount Everest (8800 m)? 

Assume each coin is 1 mm thick. 

There are issues here of misleading statistics. 

 

 

 

 

 

 

Answer: 
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How big a container would you need to put them in? 

 

 

 

 

 

You can do a similar thing with people. 

If you lined up all the people in the world end to end, 

how far would they stretch? 

(Assume that they are lying down end-to-end.) 

 

 

 

 

 

 

What if you put each person in a room 5 m by 5 m 

by 5 m? How much space would they all take up? 

 

 

3

68800

10
8.8 10


   coins (= £ 880 000). 

 

Each 10 p coin would fit inside a cuboid box 1 mm × 

25 mm × 25 mm, which is a volume of 
3 3 3 7

(1 10 ) (25 10 ) (25 10 ) 6.25 10
   

        m3. 

So all of these coins will take up only 
6 7

(8.8 10 ) (6.25 10 ) 5.5


     m3; i.e. a cube box 

with sides 1.75 m (not that big). 

 

Assuming that there are about 9
6.5 10  people in 

the world, and taking an average height of 

2 m, the distance would be 
9 10

(6.5 10 ) 2 1.3 10     

m. 

The average distance to the moon is about 

4 × 108 m, so this is 
10

8

1.3 10

4 10
32.5


 , so they would 

stretch to the moon and back 16 times. 

 

Each room would have a volume of 5 5 5 125    

m3, so for 9
6.5 10  people we would need 

9 11
(6.5 10 ) 125 8.1 10     m3. 

This is a cube box with sides of length about 

3 11
8.1 10 9.3   km. 

So a box about 10 km × 10 km × 10 km (not that big) 

could contain rooms for all the people in the world! 

 

2.10.7 If all the ice in the Antarctic were to melt, how much 

higher would the oceans rise? 

 

Approximate volume of glacier ice in Antarctica = 3 

× 108 km3; 

Approximate ocean surface area 

= 5 × 109 km2. 

 

 

Answer: 

If it all melted, the rise would be about 
8

9

3 10

5 10
0.06


  

km = 60 m. 

 

This ignores many important factors, such as the fact  

that water is slightly more dense than ice and also 

that some of the ice is underwater. (When floating 

ice melts, the water level doesn’t change.) 

 

2.10.8 Given that helium has a lifting power of about 1 

gram per litre, how many fairground-type balloons 

do you think it would take to lift an average person? 

 

 

This value comes from the densities of helium and 

air. 1 litre of helium has a mass of 0.18 g, whereas 1 

litre of air has a mass of 1.28 g. So by Archimedes’ 

principle the difference of about 0.01 N (equivalent 

to 1 g) is the resultant upward force. 

 

 

Answer: 

We can assume that each balloon is approximately a 

sphere with a diameter of about 30 cm. Therefore the 

volume of helium = 3 34 4

3 3
15 14130r     cm3, 

or about 14 litres. So each balloon will lift about 14 

g. 

An average person of mass 70 kg would therefore 

need about 70 0.014 5000   balloons (rather a 

lot!). 

 

2.10.9 Comparing volume and surface area. 
What have all these facts got in common? 

 

1. Babies need blankets to keep warm. 

2. A mouse can fall a long way and not be harmed. 

3. If an ant were enlarged to the size of an elephant 

it would collapse under its own weight. 

(That’s why elephants have proportionately 

wider feet.) 

 

Area scale factor of enlargement = 2
x ; 

Volume scale factor = 3
x , and assuming constant 

density the mass would increase by the same factor. 

Answer: 

1. The amount of heat that human beings can store 

is roughly proportional to their volume, but the 

rate at which they lose heat to their 

surroundings is roughly proportional to their 

surface area. Being small, babies have a large 

ratio of surface area to volume. 

2. The amount of energy the mouse has when it hits 

the ground is proportional to its mass (or its 

volume) but the area of impact is proportional to 

its surface area, so having a lot of surface area 

for its volume (because it’s small) helps. 

3. If the linear scale factor of enlargement was x , 
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(Stiletto heels damage some floors.) 

 

then the ant’s weight would be 3
x  times bigger, 

but its legs would be only 2
x  times thicker, so 

they would buckle. 

Pressure on the ground = 
weight

surface area
. 

 

2.10.10 Design a bucket in the shape of a truncated cone that 

has a volume (capacity) of 9 litres. 
 

 

Notice in this formula that if a r  we obtain 
2

V r h , the formula for the volume of a cylinder, 

and if 0a   we obtain 21

3
V r h , the formula for 

the volume of a cone, as we should. 

 
 

Why do you think buckets are not usually cylinders? 

 

This is a standard 2 gallon bucket. 
 

If the radius at the bottom of the bucket is r , and the 

radius at the top is a  ( r a ), and the height of the 

bucket is h , then the volume V  is given by 
2 21

3
( )V h r ar a   . 

Using values 9r   cm, 12a   cm and 26h   cm 

gives V  just over 9000 cm3, so this would hold 9 

litres. (Many other possibilities.) 
 

Truncated cones will stack inside one another, are 

stable and are easy to reach inside and clean. 
 

2.10.11 Archimedes (287-212 BC) said that if you put a 

sphere inside the smallest cylinder that it will just fit 

into, the volume of the sphere is 2

3
 of the volume of 

the cylinder. 

Can you prove that he was right? 

 

 

What is the relationship between the two surface 

areas? (Assume that the cylinder has open ends.) 
 
 

What if the ends are closed instead? 

 

Answers: 

Let r  be the radius of the sphere. Then the height of 

the cylinder will be 2r , so 

volume of cylinder = 2
2r r   = 3

2 r  and 

volume of sphere = 34

3
r  (standard result) which is 

2

3
 of 3

2 r . 

surface area of cylinder = 2
2 2 4r r r    and 

surface area of sphere = 2
4 r  (standard result), so 

they’re equal. 
 

Then, surface area of cylinder = 
2 2 2

4 2 6r r r    ; i.e., 50% more than the 

surface area of the sphere. 
 

2.10.12 Archimedes’ Principle. 
Why do some things float and others don’t? 
 

Whether something will float depends both on its 

mass (or weight) and on its shape. 

As an object sinks into the water, the water pushes 

upwards on it and the force upwards is equal to the 

weight of the water the object has displaced. If the 

object can displace water with as much weight as the 

total weight of the object before it is completely 

submerged then it will float. 

Small insects and objects can sit on the surface of 

water because of surface tension, and that is a 

different phenomenon – they’re not really “floating”. 

 

 

 

 

This will happen only if the average density of the 

object is less than the density of water 

(1 g/cm3). 

2.10.13 Inside Faces. 
If you make a 3 × 4 × 5 cuboid from 1 × 1 × 1 cubes, 

how many faces of the cubes can’t you see? (You’re 

allowed to turn the cuboid around to look at it.) 

Start with a 1 × 1 line of cubes and build up 

gradually. 

 

 
 

What if the cuboid is standing on a table, so that you 

can’t see the faces underneath either? 

 

If it were one of the xz  or yz  faces that was 

standing on the table, then it would be the co-

efficient of those terms that would change from –2 to 

–1. 

Answer: 

Imagine an x y z   cuboid where x , y  and z  are 

all positive integers. 

Since each cube has 6 faces, altogether there are 

6xyz  faces. On the outside are 2xy  visible faces 

from one pair of parallel faces, and 2xz  and 2yz  

from the other two pairs of parallel faces. So the 

total number of inside faces must 

be 6 2 2 2xyz xy xz yz   . 

 

In this case, say it’s one of the x y  faces that is 

standing on the table. Then you just lose sight of xy  

faces, so the total number of unseeable faces 

increases to 6 2 2xyz xy xz yz   . 

If 1y z  , then total = 3 2x  , for example. 

 

2.10.14 NEED tape measures, possibly other things as well. Answer: the value is not important; it’s the process 
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Estimate the volume of a human being. 
 

Practical methods: could be done at home as a 

homework; e.g., mark side of bath before and after 

getting in (use something that will rub off!). Measure 

the difference in height and multiply by the cross-

sectional area of the bath. 

Theoretical methods: e.g., ignore hands, feet, etc., 

and treat the human body as a sphere on top of a 

cuboid with two identical cylindrical arms and two 

bigger identical cylindrical legs. 
 

(See similar task in section 2.2.17.) 
 

If you were flattened by a steamroller so that you 

were only 5 mm thick, how big a splat would you 

make?! 

 

adopted that matters. 

 

Size will obviously depend on age of pupils. 

 

Theoretical approximation: 

Head: 34

3
r  = 34

3
10  = 4.2 litres; 

Trunk: 20 × 50 × 50 = 50 litres; 

Arms: 2 × 2
r l  = 2 × 3.14 × 42 × 50 = 5 litres; 

Legs: 2 × 2
r l  = 2 × 3.14 × 62 × 80 = 18 litres; 

So total estimate = 77 litres approx, which seems 

sensible. 

 

 
 

Area = Volume/height = 0.08/0.005 = 16 m2; i.e., a 

4 m by 4 m square! 

(Be cautious if some pupils may be upset by this!) 
 

2.10.15 Find out the world record for the number of people 

who have simultaneously fitted inside a standard 

telephone box. 

(Possible homework.) 

 

Estimate a theoretical maximum. 
 

Can estimate an average human volume (see above) 

or estimate by taking average density as 1 kg/litre 

(the same as water, since we just float) and an 

average human mass as 70 kg. So our volume is 

about 70 litres. 
 

Answer: About 20, depending on the type of 

telephone box and the exact rules about whether you 

have to close the door or be able to use the 

telephone! 

 

The dimensions are about 3 ft × 3 ft × 8 ft, so the 

total volume = 72 cu ft (= 2 m3 approx). 

Assuming the average volume of a human being is 70 

litres (see left), we would estimate a maximum of 

about 2000/70 = about 30 people. In practice a lot 

fewer. 

 

2.10.16 When no-one is using it, the water in the swimming 

pool comes up to 50 cm below the level of the floor 

outside the pool. How many people would have to 

get into the pool (completely submerged) to make it 

overflow? 

(We’ll assume the people are still, not jumping 

around and making waves!) 

 

The bottom of the pool actually slopes from one end 

to the other so that one end is deeper than the other. 

What difference would it make if we took this into 

account? 

Answer: We could assume that the pool is 50 m by 25 

m, so the area of the water’s surface 

= 50 × 25 = 1250 m2. We need to raise this by 50 

cm, so the volume increase needed is 

1250 × 0.5 = 625 m3. If we take an average human 

volume as 70 litres, then it would take 625 000/70 = 

about 9000 people! (Not very practicable!) 

 

It would make no difference since that extra space 

will be filled with water throughout. 

2.10.17 How many identical packets (cuboids 

3 cm × 4 cm × 5 cm) can you fit into these cuboid 

containers? 

 

1. 30 cm × 40 cm × 50 cm; 

2. 30 cm × 40 cm × 51 cm; 

3. 30 cm × 40 cm × 52 cm; 

4. 30 cm × 40 cm × 53 cm; 

5. 30 cm × 40 cm × 54 cm. 

 

 

When the answers to these divisions are not integers, 

you always need to round down. 

 

 

Try these ones (same size packets): 

1. 10 cm × 15 cm × 20 cm; 

2. 10 cm × 10 cm × 15 cm; 

3. 10 cm × 10 cm × 10 cm; 

4. 10 cm × 11 cm × 12 cm. 

 

Answers: 

1. 1000; 2. 1020; 3. 1040, 4. 1040 (still), 5. 1080. 

Provided the packets fill the entire container with no 

empty space, you can divide the volumes; i.e., for 

question 1, 30 40 50

3 4 5
1000 

 
 , but a safer way (and 

necessary if there are going to be any gaps) is to 

think how many rows you’ll get along each 

dimension; i.e., 30

3
10  along the 30 cm side, 

40

4
10  along the 40 cm side and 50

5
10  along the 

50 cm side, and 

10 × 10 × 10 = 1000. 

 

1. 50; 2. 20; 3. 12; 4. 18. 

 

In general, if the sides of the container have lengths 

A , B  and C , and the sides of the packets have 

lengths a , b  and c , you need to work out the six 

products A

a

B

b
C

c
, A

a

B

c
C

b
, A

b

B

a
C

c
, A

b

B

c
C

a
, 
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Try making up some puzzles like these. 

 

 

 

 

A spreadsheet makes this much easier. 

 

A

c

B

a
C

b
, and A

c

B

b
C

a
, in each case doing “integer 

division” (normal division but rounding down and 

discarding the remainder). You have to see which of 

these six products gives the maximum number of 

packets. 

 

2.10.18 How long is a toilet roll? 

You want to know how much paper there is on a 

toilet roll without unrolling the whole thing. What 

measurements could you take? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another way of arriving at this formula is to think 

about the area of the end of the roll (the cross-

sectional area), which is 2 2
R r   

2 2
( )R r  , 

and this will be the same as the thickness of one 

sheet multiplied by the length of the whole roll. 

So length of the roll is 
2 2

( )R r

t

 
 again. 

Answers: 

One option would be to weigh the roll and to weigh 

one sheet and do a division. (It would be more 

accurate to count off 20 sheets, say, to weigh and 

then divide by 20.) To do this, you would need an 

accurate balance and you would have to weigh a 

cardboard tube separately and subtract this from the 

total. You would calculate how many sheets were on 

the roll and then multiply this by the length of one 

sheet. 

 

A second option would be to measure the thickness 

of one sheet (again, you would measure 20, say, and 

divide by 20) and the thickness of the roll, and divide 

to find out how many layers there are on the roll. 

This number can be multiplied by the average 

circumference 1

2
( )R r , where R  is the outer 

radius and r  is the radius of the cardboard tube. 

Since the thickness of paper on the roll is ( )R r , 

and if t  is the thickness of one sheet, then the 

number of layers on the roll is 
R r

t


 so the length of 

the roll is 2
2

R r R r

t


  
  

 
 

= 
2 2

( )R r

t

 
. 

 

 
 


