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3.5   Probability 

 

 A topic where there are many misconceptions, partly due to problems with ratio thinking, partly due to not 

recognising the assumptions behind the theory. A crucial concept is the one of “equally likely outcomes”. Pupils can 

mindlessly put one number over another number to create fractions that represent probabilities without any 

understanding of the size of these values. For this reason it can be an advantage to use decimals some of the time in 

early probability work. 

 You could allow pupils to leave fractions unsimplified if that is a major hurdle in this topic. 

 Sample space diagrams are generally easier to draw and use than tree diagrams, but are limited to situations where 

there are two events. 

 For three or more events, tree diagrams are needed. Some “blanks” are given on sheets for those pupils who find it 

hard to judge the layout: when drawing tree diagrams, it can sometimes be easiest to start at the right side (where 

there are lots of branches) and work your way to the left. 

 You may need to teach the composition of a standard pack of cards:  

Excluding jokers, there are 52 cards made up of 4 suits (hearts, diamonds, spades and clubs) each containing 13 

cards (ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, king). Hearts and diamonds are red; spades and clubs black. Ace 

may be “high” or “low”. Jack, queen, king count as “picture cards”. (Some pupils/parents may object to gambling 

contexts or any use of playing cards.) 

 For practical work, throwing dice is much quieter if they’re thrown onto a book or into a small cardboard box rather 

than onto a desk! – a box also makes them less likely to fall on the floor. 

 Dictionaries now seem to allow dice (as well as die) as the singular. 

 

3.5.1 Probability Scales. 

Everybody talks about probability using words such 

as “likely”, “even chance”, “almost certain”, etc. 

Mathematicians simply make it more precise by 

using a scale of numbers. 

Numbers between 0 and 1 can be fractions, decimals 

or percentages. 

 

It’s like the difference between describing 

temperature as “fairly hot” and using the Celsius 

temperature scale.  

(Except that the probability scale has ends at 0 and 

1. The temperature scale has an end at absolute 

zero,–273 °C, but no clear cut-off at the upper end.) 

 

3.5.2 NEED carrier bag and coloured cubes. 

A useful way of discussing simple probability. 

If I want a probability of 0.5 (even chance) of pulling 

out a red cube, what could I put in?, etc. 

 

You need to use a thick or dark-coloured carrier bag 

so that you can’t see the cubes inside. (Cloth money 

bags, available from banks, are ideal for this.) 

 

3.5.3 Imagine I have 12 red cubes and 4 blue cubes in a 

bag. So p(red) = 0.75 and p(blue) = 0.25. 

Imagine I will give you 20 pence if you correctly 

guess the colour of the cube I pull out at random. 

Imagine we play this game again and again. What 

would you guess? 

 

 

 

 

How much would be a fair amount to charge people 

to play this game? 

 

Answer: 

The best strategy is to guess red every time, because 

if the draws are truly random then every go is more 

likely to turn out red than blue. 

Some pupils will feel that you ought to guess blue a 

quarter of the time, but the problem is that we don’t 

know which quarter of the goes will be blue! This 

gets us to the idea of “independent” events. 

 

Clearly 20p or more would be too much (no-one 

would play!). On average, if people guess “red” 

every time, they will win 0.75 × 20 = 15 p per go, so 

in the long run charging 15 p you would break even. 

Perhaps you would charge 15 p and hope that people 

will not always choose red, and so on average you 

should make a profit. 

3.5.4 NEED “Number Probabilities” sheet. 

 

This is an opportunity to review words and concepts 

like multiple, factor, prime, square, triangle, power, 

etc. 

 

Answers: 

1. 1

10
; 2. 1

5
; 3. 1

2
; 4. 1

10
; 5. 1

25
; 6. 19

20
; 7. 1

11
; 

8. 9

10
; 9. 1

100
; 10. 3

50
 (remembering that 1 is a 

factor of every number); 11. 2

25
; 12. 1

50
; 13. 9

100
; 
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If you can afford to use the sheets only once, pupils 

may prefer to colour in the appropriate numbers in 

the number square for each question as they go. 

Or you could use the 100-squares given in section 

1.16. 

 

14. 1

10
 (remembering that 1 is the first square 

number); 15. 1

2
; 16. 7

100
; 17. 3

50
 (or 7

100
 if you 

count 0
2 1 ); 18. 33

100
 (not 1

3
); 19. 13

100
; 20. 1

4
 

(remembering that 1 doesn’t count as a prime 

number). 

 

3.5.5 Invent a Fair Game. 

What about this one – is it fair? 

Who’s likely to do better out of it in the long run? 

“You pay me £1 to play. You throw two fair dice and 

if you get a double I give you £5. Otherwise you lose 

your money.” 

 

 

 

 

 

 

 

Can you alter this game to make it fair? 

 

We could add this rule: “If you get a total score of 7, 

I have to give you your money back.” 

Since there is a 1

6
 chance of this happening, overall 

neither of us would make or lose money playing the 

game. 

 

Pupils need to be encouraged to keep it very simple. 

Even relatively simple games can be highly 

challenging to analyse! 

 

Not fair on you, because p(double) = 1

6
, so 

 your gain per go 

1. You pay me £1. 1  

2. Throw the dice. 
1

6
5   

total 
5 1

6 6
1     

 

So on average I will gain £1 of yours every 6 goes. 

 

 

These games seem pretty pointless, since there is no 

element of skill, but games of chance are popular, 

perhaps partly because people don’t understand 

probability! However, some people enjoy the game 

even though they don’t expect to win anything 

playing. 

 

3.5.6 NEED dice. Two Dice Experiment. 

A fun way to do this is to have a “horse race”. 

On scrap paper, draw out a table as on the right (or 

use the sheet). 

 

The 12 rows represent the tracks for 12 horses. 

Choose a horse to “bet” on (no money!). 

Then throw two dice, add up the scores and that 

horse moves on one place. 

Keep going until a horse reaches the finishing line. 

That one’s the winner. 

 

This works best in pairs. Each person bets on a 

different horse. One person throws the dice and the 

other marks with an X the current positions of the 

horses. 
 

After seeing what happens, try to make a more 

successful bet on your second go. 

 

Is this a fair game? Are some horses more likely to 

win? Why is that? 

 

Many pupils are shocked to discover that the scores 

with two dice aren’t all equally likely. 

 

 

1           

2           

3           

4           

5           

6           

7           

8           

9           

10           

11           

12           

(ten columns after the column of numbers) 

 

 

 
Some pupils may realise quickly that horse 1 is a no-

hoper! 

 

Sample Space diagrams are the ideal way to explain 

the results. 

3.5.7 NEED “Statements About Probability” sheets. 

One way to use these is to cut them into 10 separate 

statements and distribute them to different people. 

Then hold a discussion in which one by one people 

read out their statements and they or others comment 

on them. 

“Do you understand what they’re meaning?” 

“Why would someone think that?” 

“Do you agree?” 

Answers: 

1. Not true. They’re not equally likely events; e.g., 

consider snow/not, earthquake/not, winning/not 

winning the National Lottery! 

2. Not true. Proportionate thinking is necessary, 

and the probability of getting red from bag A 

( 2

3
) is actually greater than from bag B ( 10

17
). 

3. The coin is likely to be biased, but it’s 
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“Can you explain why in your own words?” 

“Can you think of another example of that?” 

 

 

Alternatively, pupils can discuss the statements in 

small groups. 

 

 

 

Many pupils will be quite happy with the statements 

as they are, so this is a good way to tackle 

misconceptions. 

You may not manage to convince everybody about 

everything in this one task! 

 

 

 

 

 

 

 

 

 

If the probability of the birth of a boy is greater than 

the probability of the birth of a girl, why isn’t the 

world over-populated with men? 

A complicated issue, but part of the answer is that 

baby girls are slightly more likely to survive into 

adulthood. 

 

theoretically possible for an unbiased coin to do 

this. 

4. Not true. The probability is  
50

1

2
 in both cases, 

because each throw is an inde-pendent event: 

the coin has no memory! 

5. If the outcome is affected by skill or “luck” then 

the probability is not exactly 1

6
. This value 

refers to a random process. 

6. Similar to 5. Selecting different cards are not 

equally likely outcomes for this person. 

7. Similar to 4. Not true. The probability is  
2

1

6
 in 

both cases, because each dice is unaffected by 

the other: independent events. 

8. Not true. Two consecutive tickets are no less 

likely than any other pair. If the draw is fair, 

every ticket is equally likely to be picked. So are 

every pair of tickets. 

9. You could argue about the biology, but births 

are probably independent events, and the 

probability of a baby boy is about 1

2
 (but in fact 

just slightly greater). This misconception is often 

called the “Gambler’s Fallacy”. 

10. Although it’s silly, it can be a tricky one to 

explain. Whether someone else decides to bring 

a bomb is not affected by whether I do, because 

they’re independent events. 
 

3.5.8 If you throw two ordinary dice, you can get any 

number from 2 to 12, but they’re not all equally 

likely. By changing the numbers on the faces of the 

dice (say, using stickers), can you create two dice so 

that every score from 2 to 12 is equally likely? 

 

You could use 33 of the 36 combinations but it’s 

harder to make a close link between the numbers on 

the dice and what you need to count as the score. 
 

Can you do it if you want every total from 1 to 12 to 

be equally likely? 
 

Yes, but not simply – you have to “waste” some 

throws. One method would be to say that you will 

throw again if you get (2,3), (2,4), (2,5), (3,2), (3,3), 

(3,4), (3,5), (4,2), (4,3), (4,4), (4,5), (5,2), (5,3) or 

(55). This leaves 22 possible combinations (which is 

divisible by 11), so now we can count the total score 

on the dice, except that (2,2) has to count as 2 (not 4) 

and (5,5) has to count as 12 (not 10). So long as you 

remember that, it isn’t too bad, but it’s pretty 

complicated. 
 

Yes (much easier); e.g., change one dice so that 

three faces show a 0 and the other three a 6. 
 

3.5.9 If you wanted a series of random numbers between 1 

and 5, what kind of dice would you need? 

 

What if you wanted random numbers between 1 and 

8? 

A normal 6-sided dice would do, if you just ignore 

the throw every time you get a 6 (or stick a piece of 

paper over the 6 – although that might affect how the 

dice lands). 
 

You’d need a dice with more faces or a more 

complicated system. 

3.5.10 Three Dice Experiment. 

Choose a number between 1 and 20 – you can’t 

change it once you’ve chosen. 

Throw three dice 20 times and do a tally of the total 

scores. 

Which score comes up most often? 

Change your target number. What is the best target 

number? 

 

Can we explain the results? 

How can you get a total of 5, say? 

 

Divide the possible totals among the class so that in 

groups pupils work out the number of ways of 

This is an interesting, and much harder, variation for 

pupils who are already familiar with the “Two Dice 

Experiment”. 

 

(1, 2, 19 and 20 are impossible scores.) 

 

In fact, the most probable score is 10 or 11. 

You can pool results from the whole class. 

 

 

1, 1, 3 (3 ways) or 1, 2, 2 (3 ways), so 6 ways in 

total. (You can imagine that the three dice are red, 

blue and green if that helps to see the number of 

permutations of each combination.) 
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getting each total. 

 

Pool the results and put them into a table (see sheet). 

 

 

(There is one way of arranging AAA, 3 ways of 

arranging AAB and 6 ways of arranging ABC.) 

 

3.5.11 Buffon’s Needle (Comte de Buffon, 1707-1788). 

This 18th century problem asks what the probability 

is of dropping a needle onto a set of parallel lines and 

it landing across one of the lines. The length of the 

needle is the same as the spacing between the lines. 

 

 

If the spacing x  between the lines is larger than the 

needle length l , the probability of a hit becomes 

2l

x
. 

 

Answer: 

If the length of the needle is 1 unit and it falls at an 

angle   to the lines, then it will cross the lines if its 

centre is closer than 1

2
sin  to the lines, and the 

locus of these points makes up a fraction sin  of the 

whole area, so the probability of a hit = 

 
2

0
2

1 2
sin d




 


 . 

In principle you could use this method to estimate the 

value of  , but in practice it is a lot of work to get a 

reasonable degree of accuracy. 

Computer simulations of the experiment do give an 

accurate value for lots of throws. 

 

3.5.12 Paving Slabs (the Buffon-Laplace Needle Problem). 

NEED 2.5 cm long sticks and 5 cm × 5 cm squared 

paper (see sheet). 

 

Pupils drop the stick onto the sheet of squares and 

record a “hit” if any part of the stick lies over any 

line, and a “miss” otherwise. 

 

 

 

You can repeat the experiment (or different groups 

of pupils can try it) using shorter 

(1 cm) sticks. 

 

In general, if l  is the stick length and the grid 

rectangles are x  by y  ( l x  and l y ), then the 

probability of a hit is given by 
2

2 ( )l x y l

xy

 
. If we 

let y  , this probability becomes 
2l

x
, the result 

for parallel lines. 

 

This is an alternative, based on Buffon’s Needle 

(above), to the classic experiment where pupils drop 

a drawing pin and record whether it lands point up 

or point down. 

 

You can plot a graph of “relative frequency so far” 

against the number of throws. This usually shows 

that the relative frequency settles down to a steady 

value – this value would be our estimate for the 

probability of a hit. 

 

Using trigonometry and calculus, the theoretical 

probability of a hit is 7

4
 = 0.56 (2 dp). 

With a 1 cm long stick (probably the smallest 

practicable length), the theoretical probability of a 

hit is 19

25
 = 0.24 (2 dp). 

 

 

3.5.13 Working Out Probabilities (see sheet). 

 

It’s helpful to be explicit about the different methods 

we use to arrive at probabilities. Some pupils will 

think that “calculating is good and experimenting is 

bad”. 

3.5.14 Is anything absolutely impossible (p = 0) or 

completely certain (p = 1)? 

 

 

 

 

Logically, if you are certain that something is 

impossible, then you have a complete certainty and 

an absolute impossibility, so you’ve killed two birds 

with one stone! 

 

Answer: 

This is really a philosophical question. Jokes aside 

(e.g., the probability of a certain football team ever 

winning a match, etc.), you could say that some 

things are intrinsically impossible; e.g., the 

probability of finding a triangle with four sides or 

discovering that 2 + 2 = 5.  

Other non-mathematical contradictory events could 

be “me being at school and not being at school at the 

same time”, etc. 

As for complete certainty, some may argue that we 

may be completely sure about some religious 

statements because God is completely trustworthy. 

 

3.5.15 How many people must you have together in a room 

before there is a greater than 50% chance of at least 

two of them having the same birthday? 

Answer: 

23 people, because p(everyone has a different 
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(We ignore birthdays on 29 February here.) 

 

If there were more than 365 people, you wouldn’t 

need to do any calculations, because the pigeonhole 

principle would say that there must be at least two 

people with the same birthday. (You can’t share 

around 365 different birthdays among more than 365 

people.) 

 

birthday) = 
365

23

23
0.493

365

C
  (3 dp), since there are 

only 365 different birthdays available. Since this is 

less than 0.5, and if you work it out for 22 people it’s 

just greater than 0.5, then 23 is the minimum number 

of people. 

 

If you tried the above approach with more than 365, 

you would be trying to calculate 
365

rC  where 

365r  , and that is meaningless. 
 

3.5.16 Find out what the “Monty Hall Problem” is – or tell 

them … 

 

It’s a famous conundrum. Imagine I have three 

identical-looking boxes, one of which contains a 

chocolate bar. I know which box the chocolate is in, 

but you don’t. 

You have to choose a box. Then I will open one of 

the other two boxes, but I will always open one with 

nothing in it. (I can always do that because there are 

three boxes, and even if you choose an empty one 

there will always be another empty one I can open.) 

Now you can choose to stick with the box you’ve got 

or to swap to the other unopened box. The question 

is what is the best thing to do? Should you stay or 

swap? 

 

In fact you’re better off swapping. The easiest way to 

see this (and it’s still not that easy to see!) is to 

imagine a hundred boxes instead of just three. After 

you’ve chosen a box, I open all the others except one 

(and except yours) and they’re all empty. It’s highly 

likely that the only reason I didn’t open yours is that 

you’d chosen it. The chocolate is almost certainly in 

the other box that I declined to open. So swapping is 

definitely better. 

 

An enjoyable discussion. If no-one has anything to 

say, give pupils time to discuss in pairs/groups 

before presenting their ideas to the whole class. 

 

(Obviously, this assumes that you like chocolate and 

want to win the bar!) 

 

This can lead to lively debate. It works well if the 

teacher is devil’s advocate. 

If they say “swap”, you could ask “Has opening the 

third box really told you anything about the two 

unopened boxes?” 

If they say “stay”, you could ask “You picked it out 

of three possibles; now there are only two possibles 

isn’t it more likely to be the other one?” 

 

Another way to see it is like this: Call the boxes A, B 

and C. Imagine that the prize is in box A, but of 

course you don’t know that. You must start by 

choosing A, B or C at random. 

If you choose A, I can open B or C, but either way 

you lose if you swap. 

If you choose B, I will have to open C and you will 

win if you swap. 

If you choose C, I will have to open B and you will 

win if you swap. 

So 2

3
 of the time, swapping is better. 

 

3.5.17 A stick is broken into 3 pieces. What is the 

probability that they will make a triangle? 
Answer: It turns out to be 1

4
. You can prove it by 

thinking about 4 congruent equilateral triangles with 

sides equal to the length of the stick. 
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Number Probabilities 
 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

 

 

Use the number square above to help you work out these probabilities. 

Write your answers as fractions in their simplest forms. 

 

 

A number is chosen at random between 1 and 100 (inclusive). 

Work out the probability that the number is … 

 

1 a multiple of 10 11 a factor of 24 

2 a multiple of 5 12 a factor of 11 

3 a multiple of 2 13 a multiple of 11 

4 greater than 90 14 a square number 

5 less than 5 15 an odd number 

6 greater than 5 16 a multiple of 13 

7 between 20 and 30 (inclusive) 17 a power of 2 

8 a two-digit number 18 a multiple of 3 

9 a three-digit number 19 a triangle number 

10 a factor of 50 20 a prime number 
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Statements about Probability 
 

1 
 

Tomorrow either it will rain or it won’t rain. 

Therefore the probability of rain tomorrow is 50%. 

 

2 

 

Bag A contains 4 red counters and 2 blue counters. 

Bag B contains 10 red counters and 7 blue counters. 

If you pick a counter out of bag B, you are more likely to get a red counter than with bag A 

because there are more red counters in bag B. 

 

3 
 

If you throw a coin 50 times and you get 48 heads and only 2 tails the coin must be biased. 

 

4 
 

If you throw a coin 50 times you are more likely to get 26 heads and 24 tails than to get 

exactly 25 of each, because getting exactly 25 heads and 25 tails is pretty unlikely. 

 

5 

 

Everyone knows that some people are luckier than others. 

And everyone has good days and bad days. 

So the probability of getting a 6 with a dice depends on who throws it and when. 

You can’t just say it’s always 1

6
. 

 

6 
 

I know someone who’s practised with cards and can pull out an ace whenever he wants to. 

So for him the probability of getting an ace is nothing to do with chance. 

 

7 

 

If you throw two dice the chance of getting a double 6 is less than the chance of getting a 

double 5 because a double 6 would be the maximum score possible and there’s only one 

way of that happening. 

 

8 

 

If you buy two raffle tickets from different places in the book, you are more likely to win 

than if you buy two consecutive tickets. 

Consecutive tickets would be very unlikely to come up. 

 

9 
 

Next-door is a family with 4 boys. 

By the law of averages, the next child is bound to be a girl. 

 

10 

 

The probability of there being a bomb on an aeroplane is 1 in a million. 

The probability of there being two bombs on an aeroplane is much smaller. 

Therefore if I take a bomb with me I’m much less likely to get blown up by someone else’s 

bomb! 
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Two Dice Horse Race 

 
FINISH↓ 

1 
          

2 
          

3 
          

4 
          

5 
          

6 
          

7 
          

8 
          

9 
          

10 
          

11 
          

12 
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Probability Summary 
 

 Event: An event A , B , etc. is a possible outcome or a set of possible outcomes. 

e.g. A  = throwing a fair dice and getting a 4, 

or  B  = throwing a fair dice and getting an even number. 

( )n A  is the number of equally likely ways of A  happening. 

( )n   is the total number of equally likely outcomes (all the possibilities). 

( )p A  is the probability of A  happening, so 

 
( )

( )
( )

n A
p A

n 
 , 

and ( )p A  must be between 0 (impossible, if there’s no way of A  happening) and  

1 (certain, if A  is the only thing that could happen). 
 

 The Complement of A: This is the event “ A  doesn’t happen”. 

We use the symbol 'A . E.g., if A  = throwing a fair dice and getting a 4, 

then 'A  = throwing a fair dice and not getting a 4. 

It’s always true that ( ') 1 ( )p A p A  . 

Sometimes if you want ( )p A  it’s easier to calculate ( ')p A  and use this formula to get ( )p A . 

E.g., if A  = throwing two fair dice and getting a total of at least 3, then 

'A  = throwing two fair dice and getting a total of 2, so 351

36 36
( ) 1p A    . 

 

 Combined Events: If you have two events A  and B , then 

 ( ) ( ) ( ) ( )p A B p A p B p A B      

( )p A B  means the probability of either A  or B  happening (called “A union B”) 

( )p A B  means the probability of both A  and B  happening (“A intersection B”) 

( )p A  includes the chance of A  and B  both happening [ ( )p A B ]. 

( )p B  also includes the chance of A  and B  both happening [ ( )p A B ], 

so ( ) ( )p A p B  includes 2 ( )p A B  , and that’s why we have to subtract ( )p A B  in the 

formula above (so we don’t count it twice). 
You can see all of this more clearly on a Venn diagram. 
 

 Mutually Exclusive Events: If A  and B  cannot both happen together (one excludes the 

possibility of the other), they’re called mutually exclusive events. 

In that case ( ) 0p A B  , so the formula above simplifies to 

 ( ) ( ) ( )p A B p A p B   . 

But remember you can add probabilities like this only if they’re mutually exclusive. 
 

 Conditional Probability: We write ( )p B A  for the probability that B  happens given that A  has 

already happened. This is what you see on the 2nd branch of a tree diagram.  

You can only get there by going along the 1st branch, so A  must already have happened.  

The probability that A  happens and then B  happens is 

 ( ) ( ) ( )p A B p A p B A   . 

You can also write this formula as 
( )

( )
( )

p A B
p B A

p A


 . 

 

 Independent Events: If B  is independent of A  then it doesn’t make any difference whether A  happens 

or 'A  happens. In that case, 

 ( ) ( ') ( )p B A p B A p B   

Therefore ( ) ( ) ( )p A B p A p B   , but you must remember to use this only when events A  and B  are 

independent. 
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Sample Space Diagrams 
 

 

 

A Total of Numbers on Two 6-Sided Dice 
 

 

 

 

 

 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

 

 

 

 

 

 

Let X  = total score 

 

X  p(X)  

1 0  

2 1

36
 

3 1

18
 

4 1

12
 

5 1

9
 

6 5

36
 

7 1

6
 

8 5

36
 

9 1

9
 

10 1

12
 

11 1

18
 

12 1

36
 

total 1  

 

 

 

 

B Difference of Numbers on Two 6-Sided Dice 
 

 

 1 2 3 4 5 6 

1 0 1 2 3 4 5 

2 1 0 1 2 3 4 

3 2 1 0 1 2 3 

4 3 2 1 0 1 2 

5 4 3 2 1 0 1 

6 5 4 3 2 1 0 

 

 

Let X  = difference of scores 

 

X  p(X)  

0 1

6
 

1 5

18
 

2 2

9
 

3 1

6
 

4 1

9
 

5 1

18
 

total 1  
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Three Dice Experiment 
 

total combination no. of ways total no. of ways probability 

3 1, 1, 1 1 1 
1

216
 

4 1, 1, 2 3 3 
1

72
 

5 1, 1, 3 

1, 2, 2 

3 

3 

 

6 
1

36
 

6 1, 1, 4 

1, 2, 3 

2, 2, 2 

3 

6 

1 

 

 

10 
5

108
 

7 1, 1, 5 

1, 2, 4 

1, 3, 3 

2, 2, 3 

3 

6 

3 

3 

 

 

 

15 
5

72
 

8 1, 1, 6 

1, 2, 5 

1, 3, 4 

2, 2, 4 

2, 3, 3 

3 

6 

6 

3 

3 

 

 

 

 

21 
7

72
 

9 1, 2, 6 

1, 3, 5 

1, 4, 4 

2, 2, 5 

2, 3, 4 

3, 3, 3 

6 

6 

3 

3 

6 

1 

 

 

 

 

 

25 
25

216
 

10 1, 3, 6 

1, 4, 5 

2, 2, 6 

2, 3, 5 

2, 4, 4 

3, 3, 4 

6 

6 

3 

6 

3 

3 

 

 

 

 

 

27 
1

8
 

11 1, 4, 6 

1, 5, 5 

2, 3, 6 

2, 4, 5 

3, 3, 5 

3, 4, 4 

6 

3 

6 

6 

3 

3 

 

 

 

 

 

27 
1

8
 

12 1, 5, 6 

2, 4, 6 

2, 5, 5 

3, 3, 6 

3, 4, 5 

4, 4, 4 

6 

6 

3 

3 

6 

1 

 

 

 

 

 

25 
25

216
 

13 1, 6, 6 

2, 5, 6 

3, 4, 6 

3, 5, 5 

4, 4, 5 

3 

6 

6 

3 

3 

 

 

 

 

21 
7

72
 

14 2, 6, 6 

3, 5, 6 

4, 4, 6 

4, 5, 5 

3 

6 

3 

3 

 

 

 

15 
5

72
 

15 3, 6, 6 

4, 5, 6 

5, 5, 5 

3 

6 

1 

 

 

10 
5

108
 

16 4, 6, 6 

5, 5, 6 

3 

3 

 

6 
1

36
 

17 5, 6, 6 3 3 
1

72
 

18 6, 6, 6 1 1 
1

216
 

total   216 1  
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Paving Slabs Investigation 
 

 
 

1 Measure and record the length of the stick you are using. 

2 Drop the stick onto the squared “paving slabs” area. 

The stick may fall more “randomly” if you gently throw it upwards and let it fall back to the 

paper. 

3 Record the number of times the stick falls across a line for 100 throws. 

4 Work out the relative frequency of “hits”. 

5 What information does this answer give you? 
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Working Out Probabilities 
 

There are different ways of arriving at probabilities. 

 

 
Method Example 

Exact or 

Estimate? 

1 Experiment 

Do it lots of times, calculate the 

relative frequency and use that 

as an estimate for the 

probability. 

 

 

Finding the probability of a drawing pin 

landing with its point upwards. 
Estimate. 

2 Research 

Use data already collected by 

someone else to calculate the 

relative frequency and use that 

as an estimate for the 

probability. 

 

 

Finding the probability of someone who is 

left-handed passing their driving test first 

time. 

Estimate. 

3 Personal Judgment 

Give your best guess for the 

particular circumstances. 

 

 

Finding the probability that a particular 

person will eat chips for lunch tomorrow. 
Estimate. 

4 Theory 

Decide that some outcomes 

ought to be equally likely and 

divide the number of equally 

likely ways it could happen by 

the total number of ways. 

 

 

Finding the probability of throwing a 5 with 

a normal dice. 

Exact if our 

assumptions 

are valid. 

 

 

 

Think of some more examples for each of the four methods. 

 

 

 

 

What are the advantages and disadvantages of each method? 
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