
make a rotation of 180°’ seemed better. These claims then 
opened inquiry such as, ‘Do any two reflections compose to 
a rotation?’ that gave space for claims specifying precise 
results of composition e.g., ‘Reflections about lines forming 
a D° angle compose to a rotation of 2D° (depending on how 
you take the composition)’. Students transformed prompts 
into sites for generating and refining claims (compare 
Boero, Garuti, Lemut & Mariotti, 1996). 

To support the decompression of the definition of mathemat-
ical claim, Lai set up activities where students learned to ask 
mathematical questions about a situation, judged a collection of 
given claims for a given question, and discussed how claims 
may be ‘satisfying’. Over several years, students consistently 
now say that ‘satisfying’ means accounting for as many possi-
bilities of examples as possible, as unambiguous as possible, 
and ideally mathematically true. The proposed decompression 
of mathematical claim synthesizes these students’ discussions 
on the notion of ‘claim’ and the authors’ collective experiences 
as mathematician, teachers, and scholars. 

We focused here on mathematical claim because of its 
special place in a mathematical agenda. Claims determine 
mathematical activity, including its tools. They communi-
cate and organize knowledge along the way to further 
discovery (Hanna & Barbeau, 2008). 

We illustrated here that decompressing mathematical 
claims to be accessible, descriptive, normative, and partici-
patory can be a conceptual tool for designing teaching to 
cultivate learners’ mathematical dispositions. What about 
another process, such as proof? We know from the literature 
that proof may be an a priori justification (Hanna & Bar-
beau, 2008); or a transparent justification, where community 
members can fill in any gaps given sufficient time and moti-
vation; or a perspicuous justification that provides 
understanding (Czocher & Weber, 2020). However true 
these aspects, they do not capture the role of the community 
in creating, writing, judging, and certifying proof. 

Full participants of an epistemic community shape the 
norms of that community. Decompressions are a conceptual 
tool for students and instructors to develop shared language 
for the processes governing mathematical inquiry and argu-
mentation, and their organization. When a classroom 
community—including students and instructor—can mean-
ingfully discuss worthwhile norms for knowledge processes, 
they shape the norms of that class, and they have the poten-
tial to shape the norms of future classes where they find 
themselves. As educators and researchers, we hope this 
essay on the definition of mathematical claims promotes dis-
cussion around definitions of mathematical knowledge 
processes as objects, the role of social context (such as prox-
imal learning communities), and the compressed nature of 
mathematics as a discipline as well as the implications for 
compression and decompression for teaching and learning 
mathematical processes. 
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Note 
[1] We adopt Engle’s (2011) definition of ‘intellectual agency’ that learners 
“are ‘authorized’ to share what they actually think about the problem in 
focus rather than feeling the need to come up with a response that they may 
or may not believe in, but that matches what some other authority like a 
teacher or textbook would say is correct” (p. 8). 
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Priority of operations: necessary 
or arbitrary? 

COLIN FOSTER, TOM FRANCOME, 
CHRIS SHORE, DAVE HEWITT, CHRIS 
SANGWIN 

We reflect here on the priority of operations, where an expres-
sion such as 3 + 4 × 5 is taken to be equal to 3 + 20 = 23, 
rather than to 7 × 5 = 35. In this example, the multiplication 
takes priority over the addition, meaning that it is carried out 
first, even though, when reading left to right, the addition 
operation is encountered first. In order to teach the priority 
of operations, we see it as important to establish whether it 
is ‘merely’ a common convention—something that could 
be otherwise—or whether it follows mathematically and 
‘can be proven’. We were surprised to discover that the 
mathematics education literature appears to be unclear on 
this point. 

Hewitt (1999) introduced the terms arbitrary and neces-
sary knowledge, where arbitrary knowledge consists of 
names and conventions which could be otherwise, whereas 
necessary knowledge consists of statements that must be so 
mathematically. ‘Telling’ learners arbitrary things may be 
appropriate, but we generally seek to avoid telling necessary 
knowledge; instead, we offer tasks that aim to assist learners 
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in becoming aware of such things, without being told explic-
itly. The arbitrary may be important to be learned 
(memorised), but the necessary is where mathematics lies. 
This is because it is only with the necessary that we can jus-
tify and prove properties and relationships (Hewitt, 1999). 

 
Claims that priority of operations is neces-
sary knowledge 
It has been claimed in the literature that the priority of oper-
ations is mathematically necessary (Bay-Williams & 
Martinie, 2015; Mattock, 2019; Zazkis & Rouleau, 2018). 
Indeed, the idea that the priority of operations is an arbitrary 
convention has been described as a “myth” (Bay-Williams 
& Martinie, 2015, p. 22). For example, Mattock (2019) 
claims that, because of the commutativity of addition, an 
expression such as 3 + 4 × 5 must be equal to 4 × 5 + 3. 
Since the first expression is either equal to 3 + 20 = 23 or 
7 × 5 = 35, and the second expression is either equal to 
20 + 3 = 23 or 4 × 8 = 32, the only way in which these two 
expressions can be equal is if they are both equal to 23, and 
this tells us that multiplication must take precedence over 
addition. 

Zazkis and Rouleau (2018) offered a related argument that 
the priority of operations is necessary: 

While this convention may appear as an arbitrary deci-
sion of mathematics, it is actually a necessary result of 
interpreting multiplication as repeated addition ... Con-
sider for example 2 + 5 + 5 + 5 + 5 vs. 2 + 4 × 5. 
Obviously, 5 + 5 + 5 + 5 can be rewritten as 4 × 5. In 
order to assure [sic] that both expressions lead to the 
same result, multiplication should be performed before 
addition. (p. 144) 

Similar arguments have been used to explain why 2 × 5 ̂  3 
must be equal to 2 × 5 × 5 × 5, and cannot be interpreted as 
(2 × 5) ^ 3 (Bay-Williams & Martinie, 2015, p. 22). Authors 
have claimed that “the distributive property implies a natural 
hierarchy” [1] suggesting that, because multiplication is, in 
some sense, ‘more powerful’ than addition, just as exponen-
tiation is ‘more powerful’ than multiplication, the priority of 
operations must respect this order. 

 
Priority of operations as arbitrary knowledge 
We think that there is a circularity to these arguments, and 
that they unintentionally assume what they are trying to 
show. Our familiarity with the conventional priority of oper-
ations can make it hard to see when this knowledge is being 
unconsciously smuggled into the argument. By operational-
ising the commutativity of addition as 3 + 4 × 5 = 4 × 5 + 3, 
Mattock’s (2019) argument already assumes that multiplica-
tion takes precedence, since the 4 × 5 is treated as a fixed 
unit. If the author did not already know the conventional pri-
ority, they might instead operationalise the commutativity of 
addition by writing 3 + 4 × 5 = 4 + 3 × 5 (simply switching 
the 3 and the 4 that are either side of the addition symbol). 
This parallels what we would do if we were applying the 
commutativity of multiplication in an expression such as 
3 × 4 + 5 and equating it to 4 × 3 + 5. There would seem to 
be no a priori way to know which of these is the appropriate 
application of commutativity of addition, unless the conven-

tional priority of operations is already known. The expres-
sions 3 + 4 × 5, 4 + 3 × 5, 5 × 4 + 3 and 5 × 3 + 4 would all 
be equal to 7 × 5 (or 5 × 7) if addition took precedence over 
multiplication (opposite to the usual convention). Note that 
the latter two need addition to take priority, whereas the for-
mer two just follow the left to right order. Treating + and × 
merely as binary operations, without any prior knowledge of 
their relative priority, we would be completely unable to 
determine that either operation had priority over the other. A 
similar situation occurs if we begin with the commutativity 
of multiplication, rather than addition. Someone without 
knowledge of our cultural choices would be unable to decide 
one way or the other. 

In a similar way, Zazkis and Rouleau’s (2018) comparison 
of 2 + 5 + 5 + 5 + 5 and 2 + 4 × 5 takes for granted that 
4 × 5 is a fixed unit. 2 + 5 + 5 + 5 + 5 is certainly 2 + (4 × 5), 
but it is precisely the removal of the brackets that the 
conventional priority of operations allows. The expression 
2 + 4 + 2 + 4 + 2 + 4 + 2 + 4 + 2 + 4 can also be seen as a 
repeated addition, of 2 + 4, which can be similarly grouped 
as (2 + 4) × 5. 

One way to attempt to quieten the ‘curse of knowledge’ 
that biases us towards the conventionally correct result is to 
replace + and × with arbitrary symbols. Using ◇ and ● to 
represent two unspecified commutative binary operations, 
we do not think it is possible for anyone to say which of 
these is ‘correct’: 

3 ◇ 4 ● 5 = 3 ◇ (4 ● 5) 
3 ◇ 4 ● 5 = (3 ◇ 4)● 5 

If ◇ is addition and ● is multiplication, then, under the 
conventional priority of operations, the first equation is true 
and the second one is false. If ◇ is multiplication and ● is 
addition, then the first equation is false and the second one 
true. But if we do not know which symbol is which then we 
cannot say which is correct. 

In Figure 1, we have made the expressions unambiguous 
by employing brackets, and we have illustrated the priority 
using trees [2]. There can be no doubt that the first expres-
sion is equal to 35 and the second is equal to 23. We see the 
question of priority of operations as being about which one 
of these we conventionally wish to mean when we write the 
expression as 3 + 4 × 5 without brackets. A convention of 
working left to right would in this case lead to addition hap-
pening first; this can be overruled only if a convention of 
prioritising multiplication over addition is in operation. This 
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seems to us to be an arbitrary notational choice. It is not so 
much about what operation ‘must’ happen first as about how 
we decide to interpret potentially ambiguous notation unam-
biguously. 

 
Pragmatic choices 
Ambiguity in these kinds of expressions can always be 
resolved by inserting brackets, given an overriding conven-
tion to prioritise brackets above all else. However, these 
additional brackets require extra effort by taking up space, 
both on the page and in mental processing. It may be 
regarded as more elegant to avoid using unnecessary brack-
ets, but ‘if in doubt put them in’ might be advisable. This 
observation could lead us to seek a priority of operations 
convention that minimises the frequency with which brack-
ets must be used in the kinds of expressions we expect to be 
writing most often. 

The ease with which we can write the sum of two num-
bers in standard form, such as 3 × 105 + 2 × 104, derives from 
the implicit brackets around the products and the powers, 
which would be cumbersome to write out fully as (3 × (10 ̂  5)) 
+ (2 × (10 ̂  4)). A similar argument applies for writing poly-
nomials such as 5x2 – 3x + 2. However, we note that the 
superscript notation for indices presupposes a certain prior-
ity, because 105 + 1 is transparently different from 105 + 1. A 
more neutral way to write these expressions, that leaves 
open the issue of priority, is as 10 ^ 5 + 1, which is why we 
have used the ^ notation several times in this article. The 
conventional choice of priority of operations is internally 
consistent in the sense of a hierarchy of binding power, such 
that + < × < ^. If we had instead, for example, + < ^ < ×, so 
that 1 + 2x3 = 1 + (2x)3, this would undoubtedly be a worse 
choice. 

If the priority of operations is truly arbitrary, it should  
be possible to alter—even reverse—it without ‘breaking 
mathematics’. In other words, messing about with the con-
ventional priority may be inconvenient and inefficient, but it 
should not lead to any mathematical contradictions. There is 
a website [3] which contains a calculator which allows the 
user to vary the priority of operations and see what happens. 
For example, if instead of BIDMAS (Brackets-Indices- 
Division-Multiplication-Addition-Subtraction), we reverse 
this, to obtain SAMDIB, we would write calculations such 
as 4 × 5 + 3 = 4 × 8 = 32. The fact that it seems perfectly  
possible to do this convinces us that the priority of opera-
tions is indeed mathematically arbitrary, although, like most 
arbitrary choices in mathematics, this does not imply that the 
choice was made at random or on a whim. The convention is 
convenient and sensible, because the written symbolic nota-
tion tends to have numbers and letters visually closer 
together for the prioritised operations (e.g. 2a + 3 has the ‘2’ 
and the ‘a’ closer together than the ‘a’ and the ‘3’). However, 
it is not mathematically necessary. The only thing that would 
change with alternative choices would be the set of situa-
tions in which we would need to use brackets and how 
convenient any alternative convention might or might not 
be, given the kinds of expressions most commonly written. 

Our discussions about this have led us to conclude that the 
priority of operations is indeed an arbitrary convention. 
However, does this mean that we simply ‘tell’ it to learners 

and move on, merely allowing time for them to just ‘get used 
to it’? We think not. We think it is important for learners to 
be aware of when something is a choice and when it is not. 
When something is arbitrary, it is helpful to experience alter-
natives, so that it is clear that the convention is a choice. 
With priority of operations, we might ask learners to con-
sider what an expression such as 3 + 4 × 5 is, or ‘might be’, 
equal to, hoping that some learners will offer 23 and others 
35. The fact that there are potentially different possible 
answers raises the need for a convention. Then, since this is 
a socially-agreed convention, which is arbitrary, learners 
need to be informed of what it is. The emphasis at this point 
is on assisting memory so that the convention becomes an 
almost automatic way of viewing an expression (Hewitt, 
1999). 

 
Notes 
[1] See ‘Order of operations: historical caveats’ at https://tinyurl.com/ 
FLM-44-2-3 
[2] See https://tinyurl.com/FLM-44-2-4 for a convenient tree notation cal-
culator. 
[3] At https://tinyurl.com/FLM-44-2-5 
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On the necessity of order and 
the field axioms 

RINA ZAZKIS 

In ‘Priority of operations: necessary or arbitrary?’ (in this 
issue) Foster, Francome, Shore, Hewitt and Sangwin argue 
that the conventional order of operations in arithmetic is an 
arbitrary convention. That is, it is not a necessary property, 
using Hewitt’s (1999) distinction between arbitrary and nec-
essary. To advance their case, the authors: (1) claim that the 
arguments provided to support the position that the order is 
necessary are flawed, and (2) introduce an alternative arith-
metic in which the priority of operations is administered in 
discord with conventional mathematics. Later, they also (3) 
attempt to explain why the convention is a ‘pragmatic’ 
choice.  

There are several major problems with the provided argu-
ments and examples; I address each one in turn.  

 
On the unsubstantiated accusation of a flaw 
Foster et al. cite several examples from literature in which it 
is argued that the conventional order of operations in arith-
metic (in particular, the priority of multiplication over 
addition) is necessary. The authors suggest that these argu-
ments are based on a “curse of knowledge” (p. 25); as a 
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