
Proof Without Words: Integer Right Triangle Hypotenuses Without Pythagoras

Colin Foster (colin.foster@nottingham.ac.uk), University of Nottingham, United Kingdom

Theorem. A right triangle with legs 3 and 4 has hypotenuse 5.

Proof.

A referee offered the following generalization. Consider integers m > n > 0. Draw line segments from (0, 0) to $(2mn, 2n^2)$ and from $(0, m^2 + n^2)$ to (mn, n^2) ; these are perpendicular. The corresponding right triangle has legs $m^2 - n^2$ and 2mn and hypotenuse $m^2 + n^2$. Any primitive right triangle is given by such a pair with the additional criteria that *m* and *n* are relatively prime and have opposite parity [1].

Summary. Without reference to the Pythagorean theorem, we show that a right triangle with legs 3 and 4 has hypotenuse 5. The figure can be modified for other integer right triangles.

Reference

1. W. Sierpiński, *Pythagorean Triangles*. Trans. A. Sharma. Yeshiva Univ., New York, 1962. Reprinted by Dover, Minneola, NY, 2003.

http://dx.doi.org/10.4169/college.math.j.47.2.101 MSC: 97G40