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98.31 Equal volumes of revolution
Consider the region  in the -plane bounded above by the line

, below by the -axis and to the right by the line .  It may be
observed that the volume of revolution  of the region  about the -axis
(Figure 1a) is equal to the volume of revolution  of the same region
about the -axis (Figure 1b):
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This observation provokes the question whether there are other regions in
the -plane with the property that , an investigation that may be
accessible and instructive for a competent sixth-form student.

xy Vx = Vy

It is possible to see straightaway that any region in the first quadrant
which is symmetrical about the line  should have this property, since
the solids of revolution generated about the two axes would be identical and
thus trivially have the same volume. For example, the unit square with
vertices at (0, 0), (1, 0), (1, 1) and (0, 1) would clearly have the same
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volume of revolution about either axis, as would the triangular region
contained between the axes and the line , where .  Another
example would be the quadrant contained between the axes and the curve

.  In all of these cases, the volumes of revolution are trivially
equal, because the same solid is generated by rotating the region about either
axis.  So let us look for more regions like the region  above which are not
symmetrical about the line .
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To calculate the volume of revolution  about the -axis of a region
under the curve  between  and , we notice that it is
advantageous for our purposes to use the less well-known (at least in school)
formula:
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in which we integrate with respect to , rather than the more usual approach
in which we integrate with respect to .  In our formula, we take elements of
volume which are cylindrical shells with radius , height  and thickness
(Figure 2).
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FIGURE 2

Without loss of generality, we may choose to operate on the closed
interval [0, 1] on the -axis and define our region  as bounded above by the
curve , below by the -axis, to the left by the line  and to the
right by the line .  To avoid trouble, we shall assume  for all
on [0, 1].  Thus we may express our condition that  as
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Since the two integrals have the same limits, we may rewrite the condition as
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where the  at the front may be cancelled, since it is non-zero.p
Clearly one way in which this integral can be zero is if the integrand is

identically zero; in other words if , which can happen if, and
only if, either  (which results in no region) or , which was the
example with which we began.
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However, since for a suitable choice of  the integrand in  may
nevertheless be negative for some values of , we expect that there will be
other functions  which will satisfy this equation.  Let us attempt to
find some.  Suppose, as a trial solution, that we let , where
and , ensuring that  is positive and finite for all  on [0, 1].  Then
will be a solution to our problem if, and only if, there are values of  and
which satisfy

y Ê 0 (*)
x

y = f (x)
y = axk a > 0

k Ê 0 y x y
a k

…
 1

0
axk (axk - 2x) dx = 0.

Simplifying,
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Since , we can writek Ê 0

a = 2 (2k + 1)
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which is always positive.
Hence, we have an infinity of solutions of the form . Here are

some examples:
y = axk

• when , , and we obtain the line , making the
region  the unit square with vertices (0, 0), (1, 0), (1, 1) and
(0, 1) that we found earlier;

k = 0 a = 1 y = 1
R

• when , , giving , the solution with which
we began;

k = 1 a = 2 y = 2x

• when , , giving the parabola ;k = 2 a = 5 / 2 y = 5x2 / 2
• when , giving the cubic .k = 3 y = 14x3 / 5

Clearly it is straightforward to generate as many solutions of this form as we
wish. These functions are all positive for , and substitution and
integration verifies that these are indeed solutions to the original problem.

x > 0

Students might profitably explore other classes of solutions and gain
much useful practice at integration, algebraic manipulation and curve
sketching in the course of this pursuit.
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