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parallel to the y-axis. The above analysis now allows the part of the

hyperbola lying in the first quadrant to be sketched as in Figure 1, while its

symmetry about the x and y axes yields the remainder of the curve in the
other quadrants.

STUART SIMONS

21 Eagle Lodge, Golders Green Road, London NW11 8BD

e-mail: jesimons17@aol.com

93.26 Isometric graphs

During a desperate shortage of squared paper, mathematics must
nevertheless go on, and so mathematicians have to resort to isometric paper
instead, on which to draw their graphs. Instead of the usual orthogonal x and
y axes, they draw X and Y axes at  and plot the coordinates at the isometric
lattice points in the plane. How do familiar graphs look when plotted on
isometric axes?

From Figure 1, we can relate a point (x, y) in the left drawing to the
point (X, Y) in the right drawing by x = XcosZ and y = ¥ + X sin%.
So, in general, the point with ordinary cartesian coordinates (x, y) has
coordinates (%éx, y - %ix) with respect to isometric axes. Alternatively,
the point referred to as (X, Y) in the isometric plane is (@X, X + Y)
relative to orthogonal cartesian axes. (These equations enable any of the
‘isometric graphs’ below to be produced using ordinary graph-drawing
software by entering the appropriately transformed equations.)

y A YA N

\ 4

X X

FIGURE 1

So we can investigate the properties of working in ‘isometric land’ and
consider how the graphs of familiar equations such as ¥ = X? will look
when plotted in this way.

1. Straight lines
Straight lines are still straight, since we can write

9-1% 6

and straight lines remain as straight lines under linear transformations.
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If a straight line has equation ¥ = mX + ¢ in the isometric plane
(where m is the gradient and c is the Y intercept), then y = %Z(Zm +Dx+c
is the equation of the same line in the cartesian plane. The gradient m’ of
such a line, as usually defined (relative to horizontal and vertical directions),

is therefore m’ = ¥ (2m + 1) so, as m increases, m’ increases at the rate

dm’ 2
dﬂ = —;/-5—, which is greater than 1, so the gradients of lines increase more
m

quickly on the isometric axes than they do on cartesian. Lines parallel to the
Y-axis have equations X = k (orx = %zk if you prefer).

2. Parabolas
Conics will stay as conics, since the transformation is linear.

2

Beginning with ¥ = X2, we obtain y = ixz-;_\ﬁx = g(x+ i8§_) - %,
so the transformed curve is still a parabola, but it is not symmetrical about
the Y-axis, having a line of symmetry at x = —3@ or X = -1, so the
minimum point is (—%3, —-llg)cmm or (-4, &)isomeric- (In the isometric
plane, we take ‘minimum point’ to mean the position at which there is a
horizontal tangent, rather than a tangent parallel to the X-axis, which, of
course, happens at the origin, as in the cartesian representation.)

P 1
-~
P
/§
d

v
v %
d e
- ]
A /

This content downloaded from 86.15.27.125 on Tue, 30 Jun 2015 15:49:04 UTC
All use subject to JSTOR Terms and Conditions

e

NANANANVANAVANAN
NANAVAA N
NAVA A .
NAVAVAVAVAVANAN

ANV

FIGURE 2



http://www.jstor.org/page/info/about/policies/terms.jsp

NOTES 291

3. Circles

\
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The unit circle centred on the origin, X?> + Y? = 1, transforms to the
ellipse 5x* — 24/3xy + 3y = 3 which, by symmetry, has its major axis
along the line y = +/3x and its minor axis along y = —335x. Solving the
equations of each of these lines separately with the equation of the ellipse
gives the coordinates t({‘@, %é) and :t(%é, —%Z) from which we obtain a
semi-major axis length of %5 and a semi-minor axis length of %Z; hence, the
eccentricity is 3@. (These values are all given as viewed in the x-y plane.)
Figure 4 below shows the ellipse, together with the circles x> + y*> = 4 and
x* + y* = 3, which are tangents at the ends of the minor and major axes

respectively.

e

FIGURE 3

FIGURE 4
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4. Exponentials

One question is whether the graph of an equation such as y = 2* climbs
more quickly or less quickly when drawn in the isometric way. Converting
Y = d¥, where a is a constant greater than zero intoy = a3 + %zx and

differentiating gives —— dy _2¥3na a8,
dx 3

= a"ismerely £ = & Ina. The difference in gradient when x = 0 (for
instance) is therefore %3((2 — V3)Ina + 1), which is greater than zero

whena > ¢@*¥, Soa graph such as y = 2* does indeed grow faster on
isometric axes.

? whereas the derivative of

COLIN FOSTER
King Henry VIII School, Warwick Road, Coventry CV3 6AQ
e-mail: colin@foster77.co.uk

93.27 Fourth degree polynomials and the golden ratlo

A fascinating property of fourth degree
polynomials with two real points of inflection
F and G has been described by McMullin in
[1] and [2]. Let E and H be the two other
points of intersection between the inflection
secant and the graph, see Figure 1. Then

FG _V5+1
GH 2

This means that G divides FH into the golden
section.

Moreover,
(A1) Area(P) = Area(P), and
(A2) 2 x Area(P) = Area(C).

The results (R1) and (R2) were stated
and proved by Aude in 1949, see [3]. He also
mentions that the area properties were proved
by a student in 1948, My aim is
to use affine transformations to prove the claims. This has two advantages.
First, with the exception of (R1), the proofs are clearly shorter than a wholly
algebraic approach. Second, the transformation proofs explain why the
results are true. Pure algebraic manipulations can convince us that a
conjecture is true, but often such proofs do not give satisfactory
explanations. It is an old observation that some proofs just convince and
others also explain, see [4] for instance.

The idea of the proof is that the graph of any quartic
f(x) = ax*+ bx> + cx*> + dx + e with two real points of inflection can be
mapped to the graph of the biquadratic polynomial g(x) = x* — 6x* + 5
by an affine transformation x»>Mx + t. Here t is a 2 x 1 vector and M an

(R1) EF=GH and (R2) —

FIGURE 1
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