## An offprint from The Mathematical Gazette

Volume 96

Number 536

July 2012

328

THE MATHEMATICAL GAZETTE

## 96.47 Squares within squares

When a square is drawn with all of its vertices on the lattice points of a square grid, how many whole squares can be contained inside it? For example, for the tilted square shown in Figure 1, there are 13 whole squares inside. Is it possible to draw a square containing any given number of whole squares?



FIGURE 1: Thirteen whole squares inside a tilted square

Consider the four right-angled triangles around the edge, whose proportions define the slope of the tilting square, and let the lengths of their legs be a and b. Then Pythagoras' theorem gives us an upper bound of  $a^2 + b^2$  for the maximum number of whole squares which can be inside the large square. Clearly this number will be achieved only when either a or b is zero and the sides of the square are parallel to the grid lines. For a *tilted* square, such as the one shown in Figure 1, we will obtain fewer whole squares, and for the case shown where a = 3 and b = 4 we can see the 13 visually as  $2^2 + 3^2$  (Figure 2), suggesting that under certain circumstances the number of whole squares inside the tilted square will be

$$(a - 1)^{2} + (b - 1)^{2} = a^{2} + b^{2} - 2(a + b) + 2.$$

NOTES



However, in general two consecutive squares need not be apparent, so we begin instead with the result that the number of squares cut by the diagonal of an  $a \times b$  rectangle is given by a + b - h, where h is the highest common factor of a and b [1]. This means that the number *not* cut by the diagonal (the shaded ones in Figure 3) is ab - (a + b) + h.



FIGURE 3: The squares in a rectangle that are not cut by the diagonal

So, by symmetry, the shaded squares *underneath* the diagonal line in Figure 3 will be  $\frac{1}{2}(ab - (a + b) + h)$ . This will always be an integer because the expression ab - (a + b) + h will always be even, as shown in Table 1 (note that because the expression above is symmetrical in *a* and *b* it is not necessary to consider separately the case where *a* is even and *b* is odd):

| a    | b    | ab   | a + b | h    |
|------|------|------|-------|------|
| odd  | odd  | odd  | even  | odd  |
| odd  | even | even | odd   | odd  |
| even | even | even | even  | even |

TABLE 1: odd - even + odd = even - odd + odd = even - even + even = even

It follows from this that the number of whole squares *outside* the tilted square (Figure 4) will be  $4 \times \frac{1}{2}(ab - (a + b) + h)$ , so since the large square contains  $(a + b)^2$  little squares, and the perimeter of the tilted square passes through 4(a + b - h) squares in total, the number of whole squares left *inside* the tilted square (Figure 1) is given in general by

 $(a + b)^{2} - 2(ab - (a + b) + h) - 4(a + b - h)$ =  $a^{2} + b^{2} - 2(a + b - h)$ =  $(a - 1)^{2} + (b - 1)^{2} + 2(h - 1)$ .

Thus, when a and b are coprime (h = 1), the number of whole squares inside the tilted square is a sum of two squares, as in the example discussed earlier where a = 3 and b = 4.



FIGURE 4: Shaded squares *outside* the tilted square

The number of whole squares for some different values of a and b are given in Table 2. The numbers of whole squares that can be contained inside a square drawn with all of its vertices on lattice points are: 0, 1, 4, 5, 9, 12, 13, 16, 17, 20, 24, 25, 28, 33, 36, 37, 40, 41, 45, 49, 52, 53, 60, 61, 64, 65, 72, 73, 76, 80, 81, 84, 85, 92, 93, 100, ... [2]

| a b | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1   | 0   | 1   | 4   | 9   | 16  | 25  | 36  | 49  | 64  | 81  | 100 | 121 | 144 | 169 | 196 |
| 2   | 1   | 4   | 5   | 12  | 17  | 28  | 37  | 52  | 65  | 84  | 101 | 124 | 145 | 172 | 197 |
| 3   | 4   | 5   | 12  | 13  | 20  | 33  | 40  | 53  | 72  | 85  | 104 | 129 | 148 | 173 | 204 |
| 4   | 9   | 12  | 13  | 24  | 25  | 36  | 45  | 64  | 73  | 92  | 109 | 136 | 153 | 180 | 205 |
| 5   | 16  | 17  | 20  | 25  | 40  | 41  | 52  | 65  | 80  | 105 | 116 | 137 | 160 | 185 | 220 |
| 6   | 25  | 28  | 33  | 36  | 41  | 60  | 61  | 76  | 93  | 108 | 125 | 156 | 169 | 196 | 225 |
| 7   | 36  | 37  | 40  | 45  | 52  | 61  | 84  | 85  | 100 | 117 | 136 | 157 | 180 | 217 | 232 |
| 8   | 49  | 52  | 53  | 64  | 65  | 76  | 85  | 112 | 113 | 132 | 149 | 176 | 193 | 220 | 245 |
| 9   | 64  | 65  | 72  | 73  | 80  | 93  | 100 | 113 | 144 | 145 | 164 | 189 | 208 | 233 | 264 |
| 10  | 81  | 84  | 85  | 92  | 105 | 108 | 117 | 132 | 145 | 180 | 181 | 204 | 225 | 252 | 285 |
| 11  | 100 | 101 | 104 | 109 | 116 | 125 | 136 | 149 | 164 | 181 | 220 | 221 | 244 | 269 | 296 |
| 12  | 121 | 124 | 129 | 136 | 137 | 156 | 157 | 176 | 189 | 204 | 221 | 264 | 265 | 292 | 321 |
| 13  | 144 | 145 | 148 | 153 | 160 | 169 | 180 | 193 | 208 | 225 | 244 | 265 | 312 | 313 | 340 |
| 14  | 169 | 172 | 173 | 180 | 185 | 196 | 217 | 220 | 233 | 252 | 269 | 292 | 313 | 364 | 365 |
| 15  | 196 | 197 | 204 | 205 | 220 | 225 | 232 | 245 | 264 | 285 | 296 | 321 | 340 | 365 | 420 |

 TABLE 2: The number of whole squares contained in a square drawn with all its vertices on the lattice points of a square grid (a and b are defined in the text)

## NOTES

## References

- 1. J. R. Branfield, An Investigation, Math. Gaz. 53 (October 1969), pp. 240-247
- 2. Sequence A194154, *The on-line encyclopedia of integer sequences*, http://oeis.org.

COLIN FOSTER

King Henry VIII School, Warwick Road, Coventry CV3 6AQ e-mail: c@foster77.co.uk