
Mathematics teachers are often encouraged to try to turn
closed questions (such as ‘What is 8 × 3?’) into open
questions (such as ‘What numbers multiply to make 24?’)
because open questions are widely perceived to be richer
and more productive. However, sometimes a question that
is technically closed – even a dichotomous yes/no question
– can lead to lots of interesting discussion and thought. I
call such questions closed but provocative (Foster, 2015). In
real life a lot can ride on a closed question – ‘Do you find
the defendant guilty or not guilty?’ Closed questions are
not necessarily trivial; indeed, many of the great unsolved
problems inmathematics, such as the Riemann hypothesis
(Sabbagh, 2003), boil down to closed questions. Is the
Riemann hypothesis true or false? The answer is either yes
or no (Note 1).

Also at the level of school mathematics, the power of
closed but provocative questions should not be
underestimated. Recently in MiS Chris Pritchard has
given us a fascinating series of articles on fitting shapes
inside shapes. (You will find them in the issues for
November 2010 through to September 2013, with
problem sets following to January 2015.) Continuing this
theme, I offer here three questions – all of them closed –
which I hope that you may find provocative:

1. Will a 1 × 6 rectangle fit completely inside a
5 × 5 square?

2. Will a 2 × 13 rectangle fit completely inside a 9 × 12
rectangle?

3. Will a 1 × 4 × 8 cuboid fit completely inside a
6 × 6 × 6 cube?

Naturally, you are not allowed to break up the shapes in
any way!
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Of course, there is an implicit invitation in these closed
questions to justify your answers as well as to generalize
and invent ‘easy’ and ‘hard’ problems along these lines.

1. Will a 1 × 6 rectangle fit completely inside a
5 × 5 square?

A convenient way to explore problems of this kind is to
slide a transparency of centimetre squares over the top of
a centimetre-square grid. A first go at a scale drawing
(Fig. 1) is inconclusive. It would appear that the 1 × 6
rectangle will either just fit or just not fit, but it appears
to be too close to call. Of course, that is why I selected
this example, in the hope that the uncertainty would be
provocative! For me there is something intriguing about
a yes/no question that can be simply stated, and which
everyone can immediately understand, but which is not
quick or easy to answer.

Fig. 1 Will a 1 × 6 rectangle fit completely inside
a 5 × 5 square?
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Sometimes students are given exercises in which they are
asked to calculate lengths which they might have found
it easier to draw accurately and measure, so it is nice
sometimes to have situations where accurate drawing is
just not accurate enough and calculation is essential.
When carrying out calculations in exercises, students
frequently ask how much accuracy they should give in
their answers, and this question may be taken as a sign
that the values that they are obtaining are not being used
for any wider purpose. It is impossible to say what
‘reasonable’ accuracy is without knowing for what
‘reason’ the calculation is being carried out. Sadly for
students, the answer is often ‘no reason at all’. In the
problems we are thinking about here, it is obvious that
you need to be accurate enough to answer the question
and that determines how accurate is accurate ‘enough’.

We can tackle the first problem in the general case of a
square with sides of length s and a rectangle with sides a
and b. We can assume, without loss of generality, that
a > b. If a ≤ s, then the solution is trivial – the rectangle
can be placed with its sides parallel to the sides of the
square. So for an interesting problem we must have
a > s. Note that we cannot also have b > s, otherwise
ab > s2, and the area of the rectangle would be larger
than the area of the square – and a larger area cannot be
contained within a smaller one. So this means that for
our problem we must have a > s > b.

We will assume that the optimal position for the
rectangle is with the rectangle’s longer line of symmetry
lying along the diagonal of the square (shown dashed in
Figure 2). It would appear that we can make a longer at
the expense of making b shorter, and the rectangle will
still fit inside the square. So we will assume fixed s and a
and try to find the maximum possible b.

Fig. 2 An a × b rectangle inside an s × s square

This turns out to be quite easy once we observe that,
because of the 45° angles, the shaded right-angled
triangle in Figure 2 is isosceles, from which we can see
that the dashed diagonal of the square has length a + b,
giving the condition, or .

For our 1 × 6 rectangle and the 5 × 5 square, we have
which means that b = 1

satisfies the inequality and a 1 × 6 rectangle does fit
inside a 5 × 5 square.
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2. Will a 2 × 13 rectangle fit completely inside
a 9 × 12 rectangle?

Let’s attempt to generalize this question to fitting an
a × b rectangle inside a c × d rectangle. In a similar way
to before, we can assume without loss of generality that
a > b and c > d. If a < c and b < d, the small rectangle
will easily fit inside the larger one by placing its sides
parallel to the sides of the larger rectangle, so this
situation is not very demanding. If a > c and b > d,
the ‘smaller’ rectangle will have a larger area than the
‘larger’ one, which is impossible. This means that
the only two cases we need to consider are (i) a > c and
b < d and (ii) a < c and b > d. However, these are
symmetrical, so without loss of generality we can assume
that a > c and b < d, leaving just the case a > c > d > b.

As before, we will assume fixed a, c and d and try to find
the maximum possible b. We will assume that the best
position for fitting the largest possible a × b rectangle
inside the c × d rectangle is where all four vertices of
the a× b rectangle lie on the edges of the c× d rectangle
(Fig. 3).

Fig. 3 An a × b rectangle inside a c × d rectangle

By similar triangles,

ax + by = bd
bx + ay = bc,

and remembering that

since a > b the denominators cannot be zero.

Now, using Pythagoras’ Theorem in the bottom-left
right-angled triangle,

meaning that for a given a, c and d, b cannot be larger
than the value of b that satisfies this equation (Note 2).

As a check, we can let the c × d rectangle be a square by
setting c = d = s, giving
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since a ≠ b, this reduces to
since a > b > 0, as we obtained for our first problem
type.

We can now answer our question about whether a 2 × 13
rectangle will fit completely inside a 9 × 12 rectangle by
substituting a= 13, c= 12 and d= 9 into (*) and solving
for b, which gives b = 2.1410…, meaning that, indeed, a
2 × 13 rectangle will fit inside a 9 × 12 rectangle.

3. Will a 1 × 4 × 8 cuboid fit completely inside
a 6 × 6 × 6 cube?

This is hard, and I will leave it for the reader to ponder!

Notes

1. Well, unless you entertain the thought that it might
be ‘undecidable’. Ian Stewart says that he would “be
surprised if the Riemann hypothesis were like that,
and amazed if anyone could prove it to be
undecidable even if it were” (Stewart, 2013, p. 278).

2. We are ignoring the possibility that there might be
more than one solution for b – or none.
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