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Failing to see both sides
Colin Foster explores the benefits of being playfully awkward.

I have noticed that sometimes, in a learning 
situation, I will choose to be deliberately awkward, 
hopefully in a playful rather than a confrontational 

way, and pretend not to be able to see what the learner 
sees. Might this sometimes be a good strategy, and, 
if so, when? Our instincts as teachers tend towards 
being sympathetic and understanding, always trying 
to see things from learners’ perspectives whenever 
possible, and surely this is a good thing. But perhaps 
there are times when being deliberately awkward, 
and purposefully not seeing what the learner sees 
can be more helpful.

A seven-year-old child was drawing on some scrap 
paper, which was blank on one side and had some 
rejected article of mine printed on the other side. She 
wanted to change to some paper that was blank on 
both sides, so she asked for some paper “with two 
sides”.

Me: Doesn’t every piece of paper have two sides?

Child: I mean blank on two sides!

So, she fetched some blank-on-both-sides paper.

While she was drawing, I asked:

Me: Do you think I could show you a piece of paper 
that has only one side?

After some thought, she decided no – this is 
impossible. So, I asked her to cut a strip of paper, 
and I bent it around, gave it a half twist, and taped it 
to make a Möbius strip (Figure 1). 

Figure 1. A Möbius strip with four points marked.

Me: This piece of paper has only one side.

Child: No it doesn’t. It’s got two sides. This side and 
this side. [She pointed at two positions like A and B, 
shown in Figure 1]

Of course, I can completely see her point of view 
here. These two points really do look as though they 
are on different sides of the paper. Möbius strips are 
highly counterintuitive. I could acknowledge this, 
and we could work on a mathematical definition of 
‘side’ that would force us to conclude that they are, 
in some sense, ‘on the same side’. But I find that 
this kind of approach tends to lead to the idea that 
mathematicians are strange people – they have 
funny ways of defining things, which indeed is 
sometimes true. Although common sense tells us 
that A and B are on different sides, there is some 
precise and technical way in which mathematicians 
prefer to consider them as being on the same side. 
This is strange, and we just have to get used to it. 
Instead of this, I wanted the child to see that the only 
reasonable, common-sense position to take is that 
these points are on the same side. It takes some 
thought, but to conclude otherwise would lead to 
some very strange consequences. There is nothing 
here about mathematics being perverse. 

So, I chose to be deliberately awkward and to feign 
puzzlement at her comment. Although her response 
was totally reasonable, and exactly what I would have 
expected her to say, I chose ‘not to see both sides’. I 
chose not to be understanding, and I decided to (role) 
play the part of being unable to see her point of view.

Me: [Looking puzzled] You just pointed to the same 
side twice.

Child: No, I didn’t. This side and this side. [She 
repeated pointing to A then B.]

Me: That’s like saying ‘this side and this side’. [I pointed 
to two positions like C and D, shown in Figure 1.]

Topologically, these pairs of positions are equivalent 
– mine just happen to be a bit closer together. But, of 
course, they do look completely different.

Child: That’s the same side!

Me: Every reason why you think these [C and D] are 
on the same side applies to your two points [A and B] 
just as well. Why do you think these [C and D] are on 
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the same side?

Child: Because you can just go ... [she slides her 
finger from C to D].

Me: You can do that with these [A and B].

She traced a pen all the way round the strip from A 
to B, seeing that she can do this without crossing 
any edges. It looked as though getting from A to B 
involved crossing an edge, whereas getting from C to 
D did not. She thought that you can get from C to D 
by crossing two edges (or the same edge twice), and 
she discovered that you can also get from A to B by 
crossing two edges, if you go all the way round the 
loop. This led her to notice that the Möbius strip also 
has only one edge, colouring the edge with a felt-tip 
pen all the way round and back to where she started.

Figure 2. The place where the two ends of the strip 
meet and are taped together.

The idea of not going over an edge is important, but 
this led to a ‘sticky’ issue when she began to think 
about the spot where we had taped the two ends of 
the strip together (Figure 2).

Child: You cross the edge here!

This observation seemed to threaten the whole 
discussion. Like someone exposing how a magic 
trick was done, here she had uncovered the place 
where all the action was happening – this is where we 
switch to the other side of the paper.

Child: If the paper was coloured on one side, this is 

where you would move to the other colour, on the 
back of the paper.

To me, this join was of no importance at all, although 
it seemed critical to her. For me, you could smooth 
out this join as much as you wished, and this position 
on the strip was no more significant than any other 
position. But to her this was the crucial spot where 
everything turned.

Me: Imagine the strip was made out of plasticine, 
rather than paper. Then you could smooth it down and 
you could never find out the place where someone 
had made the join.

Child: But plasticine doesn’t really have definite 
sides, like paper does. You can always squish it into 
something where the sides get mashed together.

We were into the ‘rules of the game’. What counts as 
a shape, an object, a side, an edge? It was a very 
engaging discussion for us both. And I think that 
sometimes being awkward and deliberately ‘failing 
to see the other side’ may be helpful for enabling 
someone else to see something and articulate it. Are 
there other situations in which ‘awkwardness’ can be 
a productive pedagogical strategy?

For me this was an interesting episode to reflect on, 
because it ‘felt right’ and also ‘felt wrong’ at the same 
time, which made me doubt my approach. I have acted 
in similar ways when working with number bases 
other than 10. We might be ‘in’ base 8, for example, 
but a child will say ‘nine’, which it is very easy to fall 
into doing. I will feign lack of comprehension: “Nine? 
What is this thing called ‘nine’? Digits only go up to 
seven.” In that situation it seems like an amiable kind 
of way to react to deviations from a rule. As in the 
case of the Möbius strip, these approaches seem to 
be a kind of attempt to block one way of seeing, so as 
to create space for another.
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