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Choosing the
Best Proofs

By Colin Foster

It is a truism to say that proof is fundamental to the 
nature of mathematics (e.g., see Brown, 2010; Hamkins, 
2020). Unlike scientists, mathematicians do not merely 
accumulate over time more and more evidence for 
their claims, constantly revising and improving on 
tentative, provisional theories, gradually adding to their 
���ϐ������� ��� ��������� ������ ��� ���� �������� ��������
���������Ǥ���������������������ǡ������������������ϐ������
the accuracy of previous statements, but by building on 
�����������������������������������ǡ�������������ϐ��������
prove new theorems, also held to be completely true. 
�������������������ϐ�������������������������������������
in mathematics have not required revision. When asked 
to research some history of mathematics and produce 
posters, one Year 8 student wrote on theirs: “Pythagoras’ 
theorem was discovered over 2000 years ago, and is still 
used today.” You can detect the student’s surprised tone! 
Putting it like that does make it sound remarkable: what 
theories in biology from 2000 years ago are still useful 
today? [See Note 1.]

Unlike in university mathematics, proofs are rarely seen 
as central in school mathematics. Sometimes they appear 
in investigative project work, where students discover 
patterns, make conjectures and then try to justify them 
with arguments that, at their best, constitute (perhaps 
informal) mathematical proofs. But their value is in 
their creation and the mathematical reasoning involved: 
theorems concerning magic squares or ‘frogs’ (see 
Andrews, 2000), say, are not important results in and of 
themselves. In this article, I am concerned with the other 
appearance of proofs in school mathematics: proofs of 
key theorems (see Cirillo, 2009). My sense is that these 
proofs, if they appear at all in the classroom, tend to be 
presented by the teacher, or arise out of highly-scaffolded 
tasks, often near the beginning of a topic, before the 
theorems themselves are then used repeatedly to answer 
questions and solve problems.

For example, a teacher might prove the theorem that the 
interior angle sum of a plane triangle is 180°, and then the 
students’ main task will be to use (rather than prove) this 
�����������ϐ����������������������������ϐ������Ǥ������������
needed for doing the exercises are often very different 
from those needed to prove the result or understand the 

proof. Success with simple exercises may largely come 
down to “number bonds to 180”, whereas the proof relied 
on knowledge of alternate angles on parallel lines – these 
����������������������Ǥ����������������������������������
of the lesson sequence may sometimes appear tangential, 
and even frivolous, in that, if some or all of the students 
remain bewildered by it, this is unlikely to prevent them 
from completing the subsequent exercises satisfactorily. 
Indeed, this reasoning may push the busy teacher with a 
crowded curriculum, and what they perceive as ‘weak’ or 
uninterested students, to omit the proof altogether.

I think this disconnect between what is required to 
understand the proof and what is needed for completing 
the subsequent exercises is very common in school 
mathematics. For example, success with applying 
something like the sine rule might depend mainly on 
a student’s ability to label triangles correctly using the 
standard conventions, substitute into formulae, handle 
trigonometric and inverse trigonometric functions on the 
calculator (including getting the calculator into ‘degrees’ 
mode) and round answers, whereas proving the theorem 
depends very little on any of these things. Similarly, 
success using the quadratic formula to solve equations 
depends on very different skills from those needed to 
prove it, such as completing the square. Long teacher 
������������������������� ���������������ϐ�����������������
explaining the proof, and then, following that, begins 
explaining how to use the result to answer questions, 
before the students can get on and do anything [Note 2].

However, assuming that the teacher is committed to 
offering a proof to the class, one question that arises 
is: Which proof should I present? Many results in 
elementary mathematics have countless alternative 
proofs. How do we select the one we will offer? Are 
some proofs better, pedagogically, than others? Hamkins 
(2020) discusses the question of why anyone would ever 
need more than one proof, as, certainly, one valid proof 
��� ������� ���ϐ������� ��� ���������� �� �����Ǥ� ��� �� �����ǡ� ����
valid proofs should be equally convincing. However, he 
notes that “Proofs tell us not only that a mathematical 
statement is true, but also why it is true” (p. xiii), and 
“different arguments, especially when they are extremely 
different and highlight different fundamental aspects of 
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a topic, deepen our mathematical understanding and 
appreciation of a mathematical phenomenon” (p. 9). 
Viewed this way, it might be tempting to say that we 
should expose students to multiple different proofs for 
each theorem, comparing and contrasting the insights 
that they provide, and perhaps then even asking them 
which one(s) they prefer and why [Note 3]. However, even 
if more than one proof is going to be shared, selection is 
still needed – for example, for the (perhaps extreme) case 
of Pythagoras’ theorem, it is well known that there are 
literally hundreds of available proofs. So, some criteria 
are needed for choosing which one(s) to focus on.

Here I suggest eight possible pedagogical criteria that 
��������ϐ����������������ǯ��������������������������������
another. I will then try to test these out for the case of 
����������ǯ��������Ǥ

1. It’s quick.
������������������������������������������Ȃ�����������
time is always highly limited. A teacher might wish to 
spend as little time as possible on a proof that they 
suspect many of their students may not follow, and 
won’t need for the subsequent exercises – but they 
want to be able to say later on that, “We proved it, 
don’t you remember?” Something quick, even if not 
completely comprehensible to everyone, at least may 
make the point that ‘mathematics involves proving 
things’.

2. It’s easy to understand and convincing.
I think this is often in tension with #1. A longer 
proof, with more steps, each of which is simpler, may 
overall be easier to follow than an elegant one-liner 
that requires deep thought. But visual proofs, where 
available, often satisfy both #1 and #2.

3. It uses techniques similar to those needed for 
its subsequent application.
Although, as mentioned above, often the techniques 
needed for the proof are quite different from those 
needed to apply the theorem, this is not always the 
case. For example, circle theorem proofs often involve 
ϐ���������������������������������������������������ǡ�����
this can also be a relevant strategy when applying 
these theorems to solve problems.

4. It provides an opportunity to review or see 
applications of recently-taught techniques /
theorems.
�����������������������������������������������������ǡ�
where, for example, we choose to introduce theorems 
about angles on parallel lines before we introduce 
the theorem that the interior angle sum of a plane 
triangle is 180°, so that we can use alternate angles 
�������������Ǥ�����������������������������������������
in university mathematics, where theorems 
constantly build on previous ones. But often, in the 
school curriculum, a theorem appears because it 
is useful without there having been the necessary 
development of the techniques needed to prove it, 
e.g., formulae for the volume of 3D solids (Foster, 
2015).

5. It teaches an important method of proof that 
students need to know.
Here, the method of the proof is the objective more 
than (or equal with) the theorem itself. For example, 
older students need to know proof by contradiction, 
induction, etc., and younger students might need 
to know the process of proof by direct argument 
for showing similarity and congruence of triangles. 
���� �������� ������� ��� ������ �������� ���� ��� �����
important than how they were obtained. For example 
(see Note 4), using induction to prove that the sum of 
����ϐ�����݊ fourth powers of the integers is

6. It’s maximally general.
Sometimes a proof addresses only a particular 
special case, and other cases really ought to be 
treated separately. Indeed, sometimes this is 
overlooked, wittingly or unwittingly, and the special 
case is taken to stand for all cases. For example, 
the identity 
can be proved completely generally; for example, 
by using coordinate geometry or similar triangles. 
Alternatively, a quick way is to use the diagram 
below, consisting of two right-angled triangles, along 
with the formula.
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����� ������������������ǡ����� ��������ǯ������������� ���
angles ܲ��ܳ��180°, even though the identity does. 
And the method doesn’t generalise to the
���������������Ǥ���ǡ������������������ϐ����������������ǡ�
if you have to use a different method for proving the  

identity?

7. It’s elegant and aesthetically pleasing.
Proofs may be opportunities for awe and wonder, 
such as the wow moment students may obtain from 
������ǯ�����������������ϐ�������������������Ǥ����������
be enough to justify the inclusion of a particular 
proof. Movshovitz-Hadar (1988, p. 34) commented 
that “all school theorems ... possess a built-in surprise 
... by exploiting this surprise potential their learning 
can become an exciting experience of intellectual 
enterprise to the students”.

8. It’s canonical.
Often because of #7, some proofs are famous and 
part of the mathematical furniture, and every student 
should encounter them. For example, the classic 
proof by contradiction of the irrationality of  is 
part of the canon (see Kinnear & Sangwin, 2018), 
even if alternatives may arguably offer greater insight 
(Coles, 2005; Foster, 2021). 

Clearly, there are many possible tensions among the 
criteria in this list. Do we prioritise a clever, one-off ‘trick’ 
proof, that does the job quickly, but doesn’t contain ideas 
likely to be useful elsewhere, or do we opt for a longer, 
harder-to-follow proof that uses standard techniques 
that will work again and again? What if the former might 
����������������������Ǯ���ǯǫ������������������������������
depend on the teacher’s perceptions of the attitudes of 
the particular students, the overall diet of recent lessons, 
and many other factors.

Borovik and Gardiner (2019, p. 13) described Pythagoras’ 
�������� ��� ǲ���� ��� ���� ϐ����� ������ ����������� �������� ���
school mathematics”, so in the diagrams that follow I 
have had a go at putting down my personal judgements 
on these criteria for a selection of different proofs of 
����������ǯ��������Ǥ�����������ϐ��������������������������ǡ�
and I would be very interested to hear what conclusions 
others might come to, or what different criteria might be 
viewed as important.
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Notes
1. It is important to acknowledge that what we 

call “Pythagoras’ theorem” was known over a 
thousand years before Pythagoras was born (see 
Robson, 2008).

2. �����������������������������������������������������
we could regard the routine work that students focus 
on as a kind of ‘direct proof’, such as when teaching 
�������� ���������� ��� ϐ������� �������� ������� ���

lengths in polygons. We could even choose to frame 
these tasks as ‘proofs’:

Theorem: ����������������������������������������������
interior angles 30° and 60° is 90°.

Proof: ����������������������������������������ͳͺͲιǡ����
the third angle is�ͳͺͲ�െ�͵Ͳ�െ�Ͳ�ൌ�ͻͲι.

3. Hamkins (2020) does this beautifully in his book, 
in particular, providing seven different proofs that 
݊2� Ȃ� ݊� is even. You might like to try to anticipate 
the different proofs before looking at Chapter 2 of 
the book.

4. See Faulhaber's formula for details of  for 
other .

5. ������ϐ����������������������	������ȋʹͲͳͺȌǤ

Figure reconstructed from: Burk, F. 1996 ‘Behold: The Pythagorean Theorem’. The College Mathematics 
Journal, 27(5), 409. 

Area of original triangle = area of orange triangle + area of green triangle
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