Choosing the

Best Proofs

By Colin Foster

It is a truism to say that proof is fundamental to the
nature of mathematics (e.g., see Brown, 2010; Hamkins,
2020). Unlike scientists, mathematicians do not merely
accumulate over time more and more evidence for
their claims, constantly revising and improving on
tentative, provisional theories, gradually adding to their
confidence as new data comes in and groping towards
the truth. Mathematics develops, not so much by refining
the accuracy of previous statements, but by building on
theorems held to be completely true, in order to find and
prove new theorems, also held to be completely true.
Students sometimes find it strange that ancient theorems
in mathematics have not required revision. When asked
to research some history of mathematics and produce
posters, one Year 8 student wrote on theirs: “Pythagoras’
theorem was discovered over 2000 years ago, and is still
used today.” You can detect the student’s surprised tone!
Putting it like that does make it sound remarkable: what
theories in biology from 2000 years ago are still useful
today? [See Note 1.]

Unlike in university mathematics, proofs are rarely seen
as central in school mathematics. Sometimes they appear
in investigative project work, where students discover
patterns, make conjectures and then try to justify them
with arguments that, at their best, constitute (perhaps
informal) mathematical proofs. But their value is in
their creation and the mathematical reasoning involved:
theorems concerning magic squares or ‘frogs’ (see
Andrews, 2000), say, are not important results in and of
themselves. In this article, I am concerned with the other
appearance of proofs in school mathematics: proofs of
key theorems (see Cirillo, 2009). My sense is that these
proofs, if they appear at all in the classroom, tend to be
presented by the teacher, or arise out of highly-scaffolded
tasks, often near the beginning of a topic, before the
theorems themselves are then used repeatedly to answer
questions and solve problems.

For example, a teacher might prove the theorem that the
interior angle sum of a plane triangle is 180°, and then the
students’ main task will be to use (rather than prove) this
theorem to find missing angles in plane figures. The skills
needed for doing the exercises are often very different
from those needed to prove the result or understand the
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proof. Success with simple exercises may largely come
down to “number bonds to 180", whereas the proofrelied
on knowledge of alternate angles on parallel lines - these
are not the same thing. This means that the proving part
of the lesson sequence may sometimes appear tangential,
and even frivolous, in that, if some or all of the students
remain bewildered by it, this is unlikely to prevent them
from completing the subsequent exercises satisfactorily.
Indeed, this reasoning may push the busy teacher with a
crowded curriculum, and what they perceive as ‘weak’ or
uninterested students, to omit the proof altogether.

I think this disconnect between what is required to
understand the proof and what is needed for completing
the subsequent exercises is very common in school
mathematics. For example, success with applying
something like the sine rule might depend mainly on
a student’s ability to label triangles correctly using the
standard conventions, substitute into formulae, handle
trigonometric and inverse trigonometric functions on the
calculator (including getting the calculator into ‘degrees’
mode) and round answers, whereas proving the theorem
depends very little on any of these things. Similarly,
success using the quadratic formula to solve equations
depends on very different skills from those needed to
prove it, such as completing the square. Long teacher
introductions can result if the teacher first spends time
explaining the proof, and then, following that, begins
explaining how to use the result to answer questions,
before the students can get on and do anything [Note 2].

However, assuming that the teacher is committed to
offering a proof to the class, one question that arises
is: Which proof should I present? Many results in
elementary mathematics have countless alternative
proofs. How do we select the one we will offer? Are
some proofs better, pedagogically, than others? Hamkins
(2020) discusses the question of why anyone would ever
need more than one proof, as, certainly, one valid proof
is always sufficient to establish a claim. In a sense, all
valid proofs should be equally convincing. However, he
notes that “Proofs tell us not only that a mathematical
statement is true, but also why it is true” (p. xiii), and
“different arguments, especially when they are extremely
different and highlight different fundamental aspects of
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a topic, deepen our mathematical understanding and
appreciation of a mathematical phenomenon” (p. 9).
Viewed this way, it might be tempting to say that we
should expose students to multiple different proofs for
each theorem, comparing and contrasting the insights
that they provide, and perhaps then even asking them
which one(s) they prefer and why [Note 3]. However, even
if more than one proof is going to be shared, selection is
still needed - for example, for the (perhaps extreme) case
of Pythagoras’ theorem, it is well known that there are
literally hundreds of available proofs. So, some criteria
are needed for choosing which one(s) to focus on.

Here I suggest eight possible pedagogical criteria that
could influence a teacher’s preference for one proof over
another. I will then try to test these out for the case of
Pythagoras’ Theorem.

1. It’s quick.

This criterionis perhaps often paramount - classroom
time is always highly limited. A teacher might wish to
spend as little time as possible on a proof that they
suspect many of their students may not follow, and
won't need for the subsequent exercises - but they
want to be able to say later on that, “We proved it,
don’t you remember?” Something quick, even if not
completely comprehensible to everyone, at least may
make the point that ‘mathematics involves proving
things"

It’s easy to understand and convincing.

[ think this is often in tension with #1. A longer
proof, with more steps, each of which is simpler, may
overall be easier to follow than an elegant one-liner
that requires deep thought. But visual proofs, where
available, often satisfy both #1 and #2.

It uses techniques similar to those needed for
its subsequent application.

Although, as mentioned above, often the techniques
needed for the proof are quite different from those
needed to apply the theorem, this is not always the
case. For example, circle theorem proofs often involve
finding pairs of radii that form isosceles triangles, and
this can also be a relevant strategy when applying
these theorems to solve problems.

4. It provides an opportunity to review or see
applications of recently-taught techniques /
theorems.

This may be adriving factor in curriculum sequencing,
where, for example, we choose to introduce theorems
about angles on parallel lines before we introduce
the theorem that the interior angle sum of a plane
triangle is 180°, so that we can use alternate angles
in that proof. This principle is of course fundamental
in university mathematics, theorems
constantly build on previous ones. But often, in the
school curriculum, a theorem appears because it
is useful without there having been the necessary
development of the techniques needed to prove it,
e.g., formulae for the volume of 3D solids (Foster,
2015).

where

It teaches an important method of proof that
students need to know.

Here, the method of the proof is the objective more
than (or equal with) the theorem itself. For example,
older students need to know proof by contradiction,
induction, etc, and younger students might need
to know the process of proof by direct argument
for showing similarity and congruence of triangles.
The results proved by these methods may be less
important than how they were obtained. For example
(see Note 4), using induction to prove that the sum of
the first n fourth powers of the integers is

o+ 1)(2n + 1)(3n% +3n — 1),

6. It's maximally general.

Sometimes a proof addresses only a particular
special case, and other cases really ought to be
treated separately. Indeed, sometimes this is
overlooked, wittingly or unwittingly, and the special
case is taken to stand for all cases. For example,
the identity sin(P + Q) = cos P sin@Q + sin P cos Q
can be proved completely generally; for example,
by using coordinate geometry or similar triangles.
Alternatively, a quick way is to use the diagram
below, consisting of two right-angled triangles, along
with the %ab sin C formula.

Q Area of large triangle

%pq sin(P + Q)
Dividing through by % rq,

h h
sin(P + Q) = asinP +EsinQ = cos@QsinP + cos P sin Q

+ Area of
+

Area of
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This is a nice approach, but it doesn’t generalise to
angles P + Q > 180°, even though the identity does.
And the method doesn’t generalise to the cos(P + Q)
identity either. So, is there any benefit to using this,
if you have to use a different method for proving the
cos(P + Q) identity?

It’s elegant and aesthetically pleasing.

Proofs may be opportunities for awe and wonder,
such as the wow moment students may obtain from
Euclid’s proof of the infinity of the primes. This may
be enough to justify the inclusion of a particular
proof. Movshovitz-Hadar (1988, p. 34) commented
that “all school theorems ... possess a built-in surprise
... by exploiting this surprise potential their learning
can become an exciting experience of intellectual
enterprise to the students”.

It’s canonical.

Often because of #7, some proofs are famous and
part of the mathematical furniture, and every student
should encounter them. For example, the classic
proof by contradiction of the irrationality of v/2 is
part of the canon (see Kinnear & Sangwin, 2018),
even if alternatives may arguably offer greater insight
(Coles, 2005; Foster, 2021).

Clearly, there are many possible tensions among the
criteria in this list. Do we prioritise a clever, one-off ‘trick’
proof, that does the job quickly, but doesn’t contain ideas
likely to be useful elsewhere, or do we opt for a longer,
harder-to-follow proof that uses standard techniques
that will work again and again? What if the former might
offer a bit more of a ‘wow’? The resolution of this might
depend on the teacher’s perceptions of the attitudes of
the particular students, the overall diet of recent lessons,
and many other factors.

Borovik and Gardiner (2019, p. 13) described Pythagoras’
theorem as “one of the first truly surprising results in
school mathematics”, so in the diagrams that follow I
have had a go at putting down my personal judgements
on these criteria for a selection of different proofs of
Pythagoras’ theorem. I did not find this at all easy to do,
and I would be very interested to hear what conclusions
others might come to, or what different criteria might be
viewed as important.

Five proofs of Pythagoras’ Theorem

For more details, see Acheson, 2020, Beckman, 2020, Burk, 1996, and also my discussion in Foster, 2018.

A. Euclid

The area of the red obtuse-angled triangle is equal
to half of the area of the

The blue obtuse-angled triangle is congruent to the
red obtuse-angled triangle (SAS), so has the same
area.

The area of the blue obtuse-angled triangle is equal
to half of the area of the

So, the area of the
of the

is equal to the area

An identical argument establishes that the area of
the purple square is equal to the area of the purple
oblong.

So, the sum of areas of the and the
purple square is equal to the area of the large
square at the bottom.
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B. Shearing and translating

—>
C. Dissection (example) [Note 5]
b a a b
a a a
c
b translate the yellow,
¢ green and red triangles
b ¢ > b b
c
a
a b a b

The white area in the left figure must be equal to the white area in the right figure: c? = a® + b2.

D. Visual (a + b)? expansion [Note 5]

b a
a Equate the area of the large square, calculated in two different ways:
(a+b)? = 4(lab) + c?
b 2
a®? + 2ab + b? = 2ab + c?

b a? + b? = c2.

a
a b
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E. Burk (1996)

times a

bc

Figure reconstructed from: Burk, F. 1996 ‘Behold: The Pythagorean Theorem’. The College Mathematics

Journal, 27(5), 409.

F. Similar-triangles (attributed to Einstein)

Split a right-angled triangle into two smaller right-angled triangles
(orange and green in the figure).

If you check the angles, all three of these triangles are similar.
This means that

C1 a CZ
—=—and—=—,
a ¢ b ¢

soc;c = a®and c,c = b2
Adding these equations,
(¢; + ¢y)c = a? + b?

c? =a%+ b2

G. Area-scale-factor

This proof uses the same three, similar right-angled triangles as in
proof F.

The areas of similar triangles are proportional to the squares of their
corresponding sides. Taking the hypotenuses of the three triangles as

Area of original triangle = area of orange triangle + area of green triangle

a
c the corresponding sides, we have:
kc? = ka’ + kb?
where k is a non-zero constant.
So, c? =a® + b2
Acknowledgement

[ presented some of the ideas in this article in my plenary
at the Mathematical Association Annual Conference in
April 2021.

Notes

1. It is important to acknowledge that what we 3.
call “Pythagoras’ theorem” was known over a
thousand years before Pythagoras was born (see
Robson, 2008).

2. This would seem to contrast with situations in which

we could regard the routine work that students focus 4.
on as a kind of ‘direct proof’, such as when teaching
solving equations or finding missing angles or 5.

lengths in polygons. We could even choose to frame
these tasks as ‘proofs”:

Theorem: The third interior angle in any triangle with
interior angles 30° and 60° is 90°.

Proof: The interior angle sum of a triangle is 180°, so
the third angle is 180 — 30 — 60 = 90°.

Hamkins (2020) does this beautifully in his book,
in particular, providing seven different proofs that
n? - n is even. You might like to try to anticipate
the different proofs before looking at Chapter 2 of
the book.

See Faulhaber's formula for details of Y;_; kP for
other p.

These figures are taken from Foster (2018).
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uses techniques similar to those needed to apply it

teaches an important method of proof

reviews or applies recent content
elegant and aesthetically pleasing
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