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A mathematics teacher told me about a sixth-form  
(age 16-18) lesson on proof in which they asked the 
students how they would prove Pythagoras' Theorem. 
One student said that they would begin with the 
trigonometric identity sin2 𝜃 + cos2 𝜃 ≡ 1 and apply it to 
the triangle shown in Figure 1:

Figure 1. A right-angled triangle.

Their proof was (Note 1):

 sin2𝜃 + cos2𝜃 ≡ 1,

,

 𝑎2 + 𝑏2 =  𝑐2.

The teacher's reaction was that this 'felt 
backwards', since the trigonometric identity  
sin2𝜃 + cos2𝜃 ≡ 1 that the student was beginning  
with was, in the teacher's thinking, itself derived from 
Pythagoras' Theorem, by writing those exact steps in 
reverse order (Note 2). He asked the student, "Where do 
you think sin2 𝜃 + cos2 𝜃 ≡ 1 comes from?" The student 
said that they didn't know – they ‘just knew’ it, or perhaps 
it 'came from' the formula book.

This got me thinking about 'what comes from what' in 
school mathematics, and what it can mean to prove things 
in a system where we haven't explicitly agreed where 
we are starting from and what counts as ‘known’ or ‘not 
yet known’ at any stage. In university mathematics, we 
(ideally) build up systematically from definitions and 
axioms that lead to theorems, which in turn lead to new 
theorems that build on what’s gone before. A move is 
legitimate if and only if it builds on something we have 
already established – otherwise, we learn to act as if we 
are totally ignorant of it. But school mathematics was 
never intended to be as formal as this. We take a lot of 
things as 'axiomatic' and perhaps often don't even state 
them. We might sometimes introduce things which we 
don’t want to prove until later (e.g., see Foster, 2015), 

and, when we do prove something, we often feel free 
to use whatever we can find lying around, without 
necessarily thinking carefully about what those things 
might themselves be dependent on.

People often talk about the 'connections' in school 
mathematics, and the importance of helping students 
to understand the relationships between the different 
things that they learn. So, seeing that 'there is a 
connection' between sin2 𝜃 + cos2 𝜃 ≡ 1 and 𝑎2 + 𝑏2 =  𝑐2 
is surely very important. What the student has done in 
bridging from the first one to the second one is helpful. 
But 'connection' perhaps suggests that either direction 
is equally fine – you can come at it from either end. And 
does this perhaps work against a sense of building up 
a coherent mathematical structure of ideas? Might this 
even lead to unintentional ‘circularity’?

There are of course other ways to prove sin2𝜃 + cos2𝜃 ≡
1 that are less obviously directly building on Pythagoras' 
theorem. For example, a student could begin with 

tan2 𝜃 + 1 ≡ sec2𝜃 

(again, ‘from the formula book’, perhaps), and multiply 
through by cos2 𝜃 . As before, this invites the question, 
“Well, how do we know that tan2 𝜃 + 1 ≡ sec2 𝜃 ?”, as  
this is normally derived by beginning with  
sin2 𝜃 + cos2 𝜃 ≡ 1 and dividing by cos2 𝜃 , so another 
example of circularity. Alternatively, a student might 
begin with the equation of a unit circle of radius 𝑟, centred 
on the origin, 𝑥 2 + 𝑦 2 =  1, and substitute in 𝑥 = cos 𝜃   
and 𝑦 = sin 𝜃 . But, that circle equation was presumably 
derived from Pythagoras’ Theorem in the first place.

However, there are proofs of sin2 𝜃 + cos2 𝜃 ≡ 1 which 
track back less obviously to Pythagoras’ Theorem. Below 
are three which seem to be more steps removed (Note 3), 
although they all depend on things that would certainly 
be taught much later than sin2 𝜃 + cos2 𝜃 ≡ 1 itself.

1. Using the compound angle formula  
𝒄𝒐𝒔 (𝑨 − 𝑩) ≡ 𝒄𝒐𝒔 𝑨 𝒄𝒐𝒔 𝑩 + 𝒔 𝒊𝒏 𝑨 𝒔 𝒊𝒏 𝑩  
in reverse

Here, we write:

cos2 𝜃 + sin2 𝜃 ≡ cos 𝜃 cos 𝜃  + sin 𝜃 sin 𝜃  
≡ cos (𝜃 − 𝜃 ) ≡ cos 0 ≡ 1.
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Of course, compound angle formulae would be taught 
after sin2 𝜃 + cos2 𝜃 ≡ 1, so this is ‘backwards’, in terms 
of building up the structure. But it could be a nice 
opportunity for a backward glance to sin2 𝜃 + cos2 𝜃 ≡ 1 
from a different starting point.

2. Using differentiation

In a similar way, calculus proofs would certainly  
come later than students’ first encounter with  
sin2 𝜃 + cos2 𝜃 ≡ 1.

Let 𝑓(𝜃 ) =  sin2 𝜃 + cos2 𝜃 . Then, using the chain rule,

𝑓′(𝜃 ) =  2 sin 𝜃  cos 𝜃 − 2 cos 𝜃 sin 𝜃 = 0,
meaning that 𝑓(𝜃 ) must be a constant (since its derivative 
is identically equal to zero). So, we can just evaluate 𝑓(𝜃 ) 
at any convenient value of 𝜃 , and whatever answer we 
get must be what 𝑓(𝜃 ) is equal to everywhere. Since  
𝑓(0) = sin2 0 + cos2 0 =  1, then sin2 𝜃 + cos2 𝜃  must always 
equal 1.

3. Using complex numbers

This one is even more advanced:

 cos2 𝜃 + sin2 𝜃 = cos2 𝜃 − 𝑖2 sin2 𝜃  
 =  (cos 𝜃 )2 − (𝑖 sin 𝜃 )2.

Then, by the difference of two squares, this gives

 (cos 𝜃 + 𝑖 sin 𝜃 ) (cos 𝜃 − 𝑖 sin 𝜃 ) =  𝑒𝑖𝜃 𝑒 −𝑖𝜃  
 = 𝑒0 
 = 1.

__________________
I have often felt a sense of this kind of ‘circularity’ when 
teaching the calculus of the exponential and logarithmic 
functions. A teacher might ‘prove’ that 𝑒𝑥  is its own 
derivative by writing

  𝑦 = 𝑒𝑥 ,
  𝑥 = ln 𝑦 ,

 
,

.

But, how do we know that the derivative of ln 𝑥  is  
Wouldn’t that come after knowing that (𝑒𝑥 )′ =  𝑒𝑥 ? Indeed, 
might that not be proved as follows.

  𝑦 = ln 𝑥 , 
  𝑥 = 𝑒𝑦 ,

 

,

which is just the same kind of set of statements, written in 
the opposite order. Either of these could be a valid proof, 
but not both, surely? We are showing that these results 
are consistent with one another, but are they actually 
true? How can we know that, if we have to assume one to 
prove the other?

There are didactical choices about the order in which 
these things might come, and I think it isn’t obvious 
which it might be better to establish first

 (𝑒𝑥 )′ =  𝑒𝑥  and ∫ 𝑒𝑥  𝑑𝑥 =  𝑒𝑥  + 𝑐,

or .

Here are some possible trajectories I’ve seen.

1. Starting with compound interest

The result (𝑒𝑥 )′ =  𝑒𝑥  looks much simpler to write down 
than , and involves powers, rather than 
logarithms, and so may seem like it should be the more 
accessible starting point. So, students might begin in a 
‘compound interest’ kind of scenario, with money, say, 
growing by smaller and smaller amounts accrued more 
and more frequently:

Invest £1 at a rate of interest of 100% per year, and after 
a year you have

£(1 + 1) =  £2.

Invest £1 at a rate of interest of  of the total, twice a year, 
and after a year you have

.

Invest £1 at a rate of interest of  of the total, three  
times a year, and after a year you have

.

Eventually, if you get your interest paid daily, you  
will obtain

.

Students see the sequence

appearing to converge to a value near to 2.718… Then, 
we can assume that this limit exists, and define it for 
continuously compounded interest as

,

together with the related function

where 𝑥  is the ‘annual interest rate’. This seems a valuable 
and important activity, but it isn’t particularly easy to go 
on to use this definition to prove that (𝑒𝑥 )′ =  𝑒𝑥 . So, while 
I like this, it probably isn’t my preferred approach for 
introducing 𝑒𝑥  as its own derivative.

2. Starting with the graphs of 𝒚 = 𝒂𝒙

Another way in is to have students do some plotting of 𝑦 
=  𝑎𝑥  for different 𝑎 > 0, and estimate and draw gradient 
functions, either on paper or using graph-drawing 
software. This activity strongly suggests that there exists 
a graph somewhere between 𝑦 = 2𝑥  and 𝑦 = 3𝑥  with the 
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very special property that the gradient at every point 
is equal to the 𝑦 -value. (In dynamic geometry software, 
slide along the 𝑥 -axis a right-angled triangle with unit 
base, and its top vertex on the curve, and its hypotenuse 
will lie on the tangent at every point.) The function we 
seek has a rate of increase equal to however much of it 
you’ve got at that point – a good way to think about what 
exponential growth entails (Note 4). Students can narrow 
down the value to 2.7ish, and then we can just say, “The 
value is actually 2.71828…, and we call it 𝑒”. There is no 
proof of convergence here, but then neither was there in 
the  approach.

This is perhaps a bit like taking (𝑒𝑥 )′ =  𝑒𝑥  as our definition 
of 𝑒𝑥 , and so then we have nothing to prove – we merely 
have to demonstrate plausibility. We say that 𝑒𝑥  is the 
unique function (up to a multiplicative constant) that is 
its own derivative. Students should have developed some 
intuition through this task that there might be a number 
𝑎 such that (𝑎𝑥 )′= 𝑎𝑥 , and it is plausible that it should have 
a value close to the value of 𝑒, but nothing rigorous has 
been done. We can then use this result to establish that

3. Starting with the Taylor series

The easiest way to show that 𝑒𝑥  is its own derivative is to 
take as its definition the power series:

together with the idea that differentiating term by term 
is allowed. This builds nicely on what students already 
know – how to differentiate polynomials containing terms 
like 𝑥 𝑛 – although, of course, a power series is an infinite 
series, and not a polynomial. At the same time, or later, 
you can use the power series for sin 𝑥  and cos 𝑥  (Note 5) 
to show the relationships portrayed in Figure 2, which 
perhaps nicely avoids other methods of proving these 
that involve fiddly trigonometric identities and limits.

Figure 2. Each arrow represents differentiation with 
respect to 𝑥 

Personally, I like this approach, and building up these 
series term by term in graph-drawing software can 
be quite magical. Teachers sometimes object that this 
is ‘circular’, because the Taylor series themselves are 
derived by assuming that (𝑒𝑥 )′ =  𝑒𝑥  and (sin 𝑥 )′ = cos 𝑥 ? 
But I think this is only a problem if you don’t really buy 
into treating the Taylor series as the definition.

With any of these approaches, once you have that  

(𝑒𝑥 )′ =  𝑒𝑥 , you can get to

by saying that if

 
then 

 
and we know that the function 𝑥 (𝑦 ), whose derivative 
is itself, is 𝑥 = 𝐴𝑒𝑦 . So, rearranging, 𝑦 = ln , or  
𝑦 = ln 𝑥 − ln 𝐴 = ln 𝑥 + 𝑐, where 𝑐 is a constant.

There is then a bit of fussing about the domain, because 
ln 𝑥  is defined only for 𝑥 > 0. Sometimes this seems to 
be addressed by saying “Well, we’d better put modulus 
signs in, to make sure that taking the logarithm doesn’t 
give us an error!” But, the fact that putting in modulus 
signs means that we get an answer doesn’t, of course, 
mean that it gives us the right answer! So, we really need 
to consider the two cases separately.

• If 𝑥 > 0, then, in 𝑥 = 𝐴𝑒𝑦 , 𝐴 > 0. So, ln  can be 
written as 𝑦 = ln 𝑥 − ln 𝐴 = ln 𝑥 + 𝑐, where 𝑐 is a 
constant.

• However, if 𝑥 < 0, then, in 𝑥 = 𝐴𝑒𝑦 , 𝐴 < 0. So, although  
𝑦 = ln  is still fine, because  (the quotient of 
two negative numbers is positive), when we split this 
up into a difference of logarithms, we need to treat  
it as ln , and write ln (−𝑥 ) − ln (−𝐴), which 
can be written as 𝑦 = ln (−𝑥 ) + 𝑐, where 𝑐 is a  
(different) constant.

So, all of this can be summarised by writing 𝑦 = ln|𝑥 | + 𝑐.

4. First teach  

Finally, there is the possibility of beginning with 
. In more advanced work, we define the 

logarithm function as

ln 

so perhaps it might not be such a bad idea to begin  
at this end, rather than with 𝑒𝑥 , and work in the  
opposite direction?

Early on, when teaching

inevitably, something has to be said about the division 
by zero that would happen if 𝑛 = −1. It is possible to 
leave this as a loose thread to pick up on later, and say: 
“We’ll come back to this later and find out what happens 
for this exceptional case”. I’ve usually treated it that way. 
Alternatively, it could be dealt with now and lead on to 
the calculus of the logarithmic and exponential functions.
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Once the chain rule for differentiation has been learned, 
we can note that, since constants can be taken outside 
the integral,

This means that we can write

So, if we suppose that the integral that we desire is a 
function 𝑓, such that

then, by the chain rule,

Since 𝑓(1)= 0 (the upper and lower limits on the integral 
coincide), simplifying this gives

𝑓(𝑎𝑥 )= 𝑓(𝑥 )+𝑓(𝑎), for all values of 𝑥 ≥1.

Our mystery function 𝑓 has the property that multiplying 
𝑥  by a constant 𝑎 has the effect of adding a constant 
(𝑓(𝑎)) onto 𝑓(𝑥 ). So, we need a graph for which a scaling 
in the 𝑥 -direction is equivalent to a vertical translation. 
Not many graphs do that. The ‘multiplication leading to 
addition’ feature is highly suggestive of the logarithm 
function. This is no more than a nudge, and certainly 
we have no reason to think that it will turn out to be 
the natural logarithm, but it’s perhaps a possible way to 
address this.

But I think overall my preference is to start with the 
power series (see also Ullah, Aman, Wolkenhauer, & 
Iqbal, 2021). I would be very interested to know what 
any readers think.

Notes

1. The transition from sin2𝜃 + cos2𝜃 ≡ 1, with the 
identity symbol to 𝑎2 + 𝑏2 =  𝑐2, with an equals sign, 
is interesting here (see Foster, 2021). If 𝑎, 𝑏 and 𝑐 are 
constrained to be the sides of a right-angled triangle, 
with 𝑐 the hypotenuse, then 𝑎2 + 𝑏2 =  𝑐2 is true for 
all possible values of 𝑎, 𝑏 and 𝑐, so shouldn’t it be  
𝑎2 + 𝑏2 ≡ 𝑐2? If you disagree, then which symbol,  
= or ≡, do you think should be used on line 2 of the 
proof, for 

2. An issue with this, of course, is that sin2𝜃 + cos2𝜃 ≡ 1 
holds for all real 𝜃 , whereas the right-angled triangle 
proof deals only with the case where .

3. For these and other proofs, see https://math.
stackexchange.com/questions/607103/prove-
sin2-theta-cos2-theta-1.

4. It is interesting how often the word ‘exponentially’ 
is misused, for example by politicians, to mean ‘a lot’. 
But an exponential growth can be ‘small’ and still 
exponential (see Suri, 2019). Radioactive decay is 
exponential, but, for isotopes with half lives in the 
millions of years, it is unimaginably slow on a human 
timescale.

5. Rather than Taylor series, we should perhaps call 
these the Madhava series:
https://en.wikipedia.org/wiki/Madhava_series.
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