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There are many tempting patterns in mathematics that 
don’t work out the way one might expect (Foster, 2020). 
For example,

When you differentiate sin x you get cos x. 
So, when you differentiate inverse sin of x, you will  
get …?

Well, the answer is not quite cos–1 x; in fact, you get 1

1– x2
.

How strange is that? Confronted with this, a sixth-form 
pupil asked, “Where did the sine go?” It seems reasonable 
that in calculus a sine might transform into something 
like a cosine, but how can it just disappear altogether, 
without leaving a trace? It would be like differentiating 
sin x and getting x3.

Thinking about the pupil’s prior experiences, there 
is perhaps quite a sharp line in school mathematics 
between solving ‘trigonometric equations’, such as  
10sin x – 3cos2 x = 5, and solving non-trigonometric 
equations, such as 3x2 + 10x = 8. (This is often 
reinforced by using θ rather than x for the unknown 
in the former.) There is no way that manipulation 
of a trigonometric equation will ever lead to all the 
trigonometric functions dropping out to leave ‘just 
xs’. That would be a sure sign that something had 
gone haywire with the algebra, such as cancelling

the ‘sin’ in an expression like sinx
sin y

 to give x
y
.

One way to respond could be by addressing the pupil’s 
false-but-tempting idea that, in general,

                                              . 

Although this may sound plausible when expressed 
verbally, the symbols make it look unlikely, and it is easy 
to find simple counterexamples, such as f(x) = x2 for x ≥ 0, 

where f ' f −1 x( )( ) = f ' x( ) = 12x
−1
2  and 

f −1 f ' x( )( ) = f −1 2x( ) = 12x .

However, sin x  is itself a perfectly good counterexample, 
so perhaps we should return to this.

Proving that something is the case doesn’t necessarily 
offer any insight as to why. The standard moves here are:

	 y = sin–1 x ⟺ x = sin y

Each step may be OK [Note 1], but the overall result 
still seems mysterious. As the pupil said in the ensuing 
conversation, “How can the answer not have anything 
to do with sine?” There is such a beautiful relationship 
where the gradient function of sine is cosine, which 
students can see as intuitively plausible by examining 
the sine graph and thinking about where the gradient is 
positive, negative or zero, and where it is increasing and 
decreasing. It seems very weird that, once you reflect 
(part of) this graph in y = x (which is all that sin–1 is 
doing), the gradient function now has nothing at all to do 
with sine or cosine [Note 2].

This question also seems reasonable when you think 
about the prior work on differentiation that had led up to 
this lesson. When you differentiate esomething, your answer 
is going to contain esomething. Differentiating polynomials 
gives polynomials; differentiating trigonometric 
functions gives trigonometric functions. Each class of 
function fits nicely into a different chapter of the textbook, 
so what is going on with differentiating sin–1 x? Why is the 
sine dropping out?

An analogous thing happens with integration when 
integrating xn, where the result is xn+1

n+1
+ c , for all n except  

n = –1. The fact that ∫ x −1dx = ln x + c  is quite a shock, 
and takes a bit of work to make sense of. The surprise is 
that we are working happily within the powers of x, when 
suddenly we are ‘hit by a log’, so to speak! Perhaps there is 
a similar potential query about why differentiation of ln x 
produces 1

x
, rather than anything involving logarithms?

Similar surprises arise in integration when pupils are 
confronted with the difference between, say,
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f ' f −1 x( )( ) = f −1 f ' x( )( )

dx
dy

= cos y

∫
1

x2 −1
dx = ∫

1
2

x −1
−

1
2

x +1
⎛
⎝⎜

⎞
⎠⎟
dx

= 1
2
ln x −1 − 1

2
ln x +1 + c

dy
dx

= 1
cos y

= 1

1− sin2 y
= 1

1− x2
.
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One moment, we are in the world of partial fractions and 
logarithms; the next, with just a single sign change, we 
have switched to trigonometric functions! Again, proving 
this result, by suddenly deciding (for no apparent reason) 
to do a substitution in which x = tan u, certainly shows us 
that the result is correct, but doesn’t really help us to see 
where it came from:

	

	

	

	

This feels like a lucky fluke, caused by the tangent 
function happening to differentiate to make sec2, while, 
at the same time, purely by accident, sec2 happens (for 
unrelated reasons, to do with sin2 + cos2 ≡ 1) to be equal 
to tan2 + 1, so it all cancels out nicely. Is there more to 
understand here than this?

This time, perhaps there is, because, if we know 
about imaginary numbers, we can express 1

x2 +1
 in partial 

fractions, just like we did with 1
x2 −1

:

	

	

	

	

which means that tan−1 x = i
2
ln x + i
x − i

.

 
So, perhaps polynomials, logarithms and trigonometric 
functions are more closely related than we tend to think; 
consider, for example,

	

	

	

 
 
The boundaries between these categories of functions 
are more blurred than we might have thought.

Returning to sin–1 x, I am indebted to Bob Burn for alerting 
me to the possibility of the diagram shown in Fig. 1, in 
which the vertical side of the large right-angled triangle 
is x, meaning that the opposite angle in that triangle must 
be sin–1 x, and therefore the arc length that subtends this 
angle must also be sin–1 x. Now, creating a tangent to the 
circle where it meets the hypotenuse of this triangle, and 
looking for dy and dx, we can see, by similar triangles,

that, in the limit, 
dy
dx

= 1

1− x2
.

So perhaps we were wrong to think that 
1

1− x2
 did not 

involve (co)sine, since it involves x, which is a sine of 
something. Does this go some way towards answering 

∫
1

x2 +1
dx = ∫

1
tan2u+1

sec2udu

= ∫du
=u+ c
= tan−1 x + c.

∫
1

x2 +1
dx = ∫

1
2i
x − i

−

1
2i
x + i

⎛

⎝

⎜
⎜
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dx
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2i
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2i
ln x + i + c

= 1
2i
ln x − i
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+ c

= i
2
ln x + i
x − i

+ c ,

sinx = x − x
3

3!
+ x

5

5!
− x

7

7!
+…			,

sinx = e
ix −e− ix

2i
	,

eiθ = cosθ+ isinθ.

Fig. 1 Differentiating y = sin–1 x geometrically

and	∫
1

x2 +1
dx = tan−1 x + c.

∫
1

x2 +1
dx = ∫

1
2i
x − i

−

1
2i
x + i

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
dx

= 1
2i
ln x − i − 1

2i
ln x + i + c

= 1
2i
ln x − i
x + i

+ c

= i
2
ln x + i
x − i

+ c ,
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the pupil’s question? I would be very interested if any 
reader can do better.

Note

1.	 Some thought needs to be given to why we take the 
positive square root. Looking at the graph y = sin–1 x 
(Fig. 2), we can see that the gradient of this function is 
positive everywhere (in fact, it is never less than 1), so 
taking the positive root ensures we have the correct 
gradient function. Another way to see this is to note that     
 
                     , and cos y  is never less than zero  
 
throughout the range                        .

2.	 If we stubbornly insisted on expressing         in terms  
 
of cos–1 x, then we could do this, in a highly-contrived 
fashion, by writing 

 
         �                                                                            but this doesn’t  

 
 
seem to offer me any insight.
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Fig. 2 y = sin–1 x
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I now showed them the same problem in a different 
context – the one used by UKMT when the problem was 
first posed as a challenge question about 30 years ago.

Weighing the baby at the clinic was a problem. The baby 
would not keep still and caused the scales to wobble. So 
I held the baby and stood on the scales while the nurse 
read off 78 kg. Then the nurse held the baby while I read 
off 69 kg. Finally I held the nurse while the baby read off 
137 kg. What is the combined weight of all three?

My student group laughed. This time there is a reason 
why we don’t know the individual weights – it’s because 
babies can’t weigh themselves. And the laugh that comes 
from the absurdity of the final weighing made them 
much more motivated to tackle the problem. They now 
viewed the problem as 4.5 for puzzliness (an increase of 
3 points) and 5.5 for engagement (2½ points higher). The 
best puzzles have an engaging and plausible (or comedic) 
storyline, and a good punchline.

Finally, do you remember the ‘mathematics question’ 
that featured at the start of this article?

 
Solve the equation:

 
Here it is again, this time presented as a puzzle.

Tim left this card on the table:

“I’ve worked out what x is!” said Bob, a minute later. 
Amy walked over and picked up the card. Five minutes 
later she announced: “I’ve found TWO solutions”. Amy’s 
solutions were different from Bob’s. What were they?

What started as a routine algebra problem has turned 
into something much more intriguing. Can you solve it?

ANSWERS

1.	 The bear is white. The only place where you can go 
south, east and north in this way and see a bear is 
near to the North Pole.

2.	 If you (Caesar) shift the word THREE by four 
places, you get XLVII, which is 47. Alternatively, 
the letter C is number 3 in the alphabet, and 
if you add all the letters of CAESAR you get: 
 
3 + 1 + 5 + 19 + 1 + 18 = 47.

3.	 Bob’s solution was x = 21. The formula was written 
on a card and when Amy picked up the card she must 
have looked at it upside down. The upside-down 
equation is

        and has two solutions: x = 3 and x = –3.x
6
=1−

1− x( )
8

	.

X
6
= I−

I−X( )
8

8
x −1( ) −1=

9
x
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Correction and apology
(Colin Foster’s article in the Nov. 2020 issue)

Due to some infelicitous handling by the Editors of a 
small section of Colin Foster’s article ‘Differentiating 
inverse trigonometric functions’ (Mathematics in 
School 49, 5, pages 10–12), the message that the 
author wished to convey was lost. The simplest way to 
correct the situation is to replace the start of the fourth 
paragraph of the first column of page 10, with:

One way to respond could be by addressing the 
pupil’s false-but-tempting idea that in general,

  (f –1(x)) � = (f �(x))–1

and the subsequent algebra for f(x) = x2 with:

( f −1(x) ′) = ( x ′) = 1
2
x
−1
2

( f (x ′) )−1 = (2x)−1 = 1
2
x.

Here, of course, Colin is using the notation f –1 to 
indicate ‘the inverse function of f �, not f raised to the 
power of –1,

so (2x)−1 = 1
2
x , rather than 12x .

The Editors apologise for this lapse and hope it did not 
spoil your enjoyment of the article.
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