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making SenSe of proof 
by ContraDiCtion

By Colin Foster

I will start with an old joke: 

Student:  What is proof by contradiction? 
Teacher:  I think you know. 
Student:  If I knew, I wouldn’t be asking. And I am 

asking, so that means that I don’t know. 
Teacher:  Ah, so you did know! 

There are certain topics in mathematics where 
‘philosophy’ (in the broadest sense) is likely to intrude. 
Introducing negative or complex numbers is one: is 
mathematics discovered or invented? Another one is 
proof by contradiction (or contrapositive, see Kinnear & 
Sangwin, 2018, for a discussion of the difference). G H 
Hardy (1967, p. 94) described proof by contradiction as 
“one of a mathematician’s finest weapons”, and yet it is 
frequently perceived to be difficult (see Quarfoot & Rabin, 
2021). People often say that the idea of a counterfactual 
situation is hard, and that students struggle with the logic, 
but actually the logic behind proof by contradiction/
contraposition is common in everyday life (as in the 
joke), and even small children employ it frequently: 

Adult:  Do you think Mama is at home? 
Child:  No. 
Adult:  How do you know? 
Child:  If she were, her car would be out the front, and 

it isn’t – so she isn’t. 

The mystery around proof by contradiction is probably 
not helped by the fact that students’ first exposure to the 
idea tends to be the classic proof that  is irrational, 
which is not the simplest example: 

Theorem
 is irrational. 

Proof 
Suppose that , where p and q are co-prime, positive 
integers. This means that 2q² =  p², which means that p 
must be even, so we can write p = 2m, where m is an 
integer. 

Substituting this in, we get 

2q² =  p² =  (2m)² =  4m² 

So, q² =  2m², and this means that q must also be even. 

But, we said at the start that p and q were co-prime, so 
they can’t both be even. So, we have a contradiction. 
Therefore,  cannot be rational. 

Despite being famous, and part of the ‘canon’ of 
mathematics, this is actually a rather subtle proof to 
use as first exposure to proof by contradiction, because 
we sneaked in at the start the bit about p and q being 
co-prime. This isn’t part of the definition of a rational 
number, so students often wonder why it’s included. Why 
were we so insistent on writing the fraction in its lowest 
terms? (Note 1) The truth is that we only did it because 
we were anticipating the ending, and we knew that we 
would need that to get the contradiction! Really, it makes 
more sense to see this as a proof by infinite descent on 
the positive integers, and, because there is a smallest 
positive integer, we arrive at a contradiction. So, for these 
reasons, I think that this is not the best choice for a first 
example of a proof by contradiction (Note2). As Kinnear & 
Sangwin (2018) pointed out, proving the irrationality of 
something like log 2 is actually much easier, even though 
log 2 seems like a more ‘advanced’ number than :

Theorem 
log10 2 is irrational. 

Proof 
Suppose that log102 = p/q, where both p and q are positive 
integers. 

(This time there is no need to make any assumptions 
about p and q being co-prime.) 

This means that 2 =  10p/q. So 2q =  10p. 

We are now basically done, because we can see that this 
can’t possibly be right. Both p and q are integers greater 
than zero, so we must have a factor of a power of 5 on 
the right-hand side, but not on the left. (We can write  
2q = 2p5p, if we prefer, which makes this even clearer.) 
The qth power of 2 is never going to equal a multiple of a 
power of 5. So, we have a contradiction (Note 3), and so 
log 2 can’t be rational. 

It is always good in situations like this to try to unpick 
a little why it fell out the way it did. Proofs should be 
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convincing, but the best ones are also enlightening. What 
is it about the numbers 2 and 10 that makes this happen? 
The crucial thing is that one is not a rational power of the 
other. If, instead, we used 2 and 8, no contradiction would 
be reached, since log82 =  gives 2q =  8p = 23p, which is 

fine, giving q = 3p and therefore . Of course, we 

knew this at the start because , and so log82 = . 

Once you see what is going on here, this may actually be 
enough to convince you, at least informally, that logba is 
going to be rational if and only if a is a rational power of b 
(equivalent to vice versa). Similarly, with the proof of the 
irrationality of , it is well worth working it through for 

, just to see why exactly the proof fails in the case of the 
square root of a square number, and for , to see why it 
doesn’t require the square-rooted number to be prime. 

However, there is really no reason to wait until 
students meet logarithms before introducing proof by 
contradiction. A much earlier opportunity would be 
something like Euclid’s proof that there are infinitely 
many primes, which can be done in lower secondary 
(Note 4): 

Theorem 
There are infinitely many primes.

Proof 
Suppose, for contradiction, that there is a finite number 
of primes. Write them all down as a list. Multiply them all 
together and add 1. Call this number n. 

Is n prime? 

(i) If it is, we have a contradiction, because we’ve found 
a number, bigger than any on our list, which is prime. 

(ii) If it isn’t prime, then it must be a product of smaller 
primes. But none of the primes on our list can be 
factors of n, because all of them leave a remainder 
of 1 when divided into n. So, n must have at least one 
prime factor that we didn’t have on our list. So, again, 
we have a contradiction. 

This means that there must be an infinite number of 
primes. 

I think it is much easier to get the sense of a proof by 
contradiction with something like this than with the 
classic proof of the irrationality of . (See also Savic, 
2017, for a discussion about choice of content for 
introducing proofs.) 

Are there even easier proofs by contradiction? There 
certainly are; one of the simplest is proving that there 
is no largest integer. Even quite small children can 
understand this as well as anyone, although the idea that 
‘you can always add 1’ is not often formulated as a proof 
by contradiction. We can sharpen that up by supposing, 
for contradiction, that there is a largest possible integer. 
Write it down. (Pedagogically, I find the ‘Write it down’ 

instruction quite useful for making concrete what is going 
on.) Then, suppose I decide to add 1 to your number, 
and thus obtain a larger integer. So, you must have been 
wrong to think that the number you wrote down was 
the largest integer, because I just made a larger one! 
You can think of this as an iterative process, where you 
keep thinking you’ve found the largest integer, only to be 
foiled when I impertinently add 1 to it. But, for proof by 
contradiction, you only need to go through this once to 
establish the result. 

The idea of proof by contradiction takes a bit of getting 
used to, so it is worth introducing it early on, when 
everything else that’s happening in the proof isn’t too 
taxing. “Assuming something you know ain’t true” can feel 
wrong to students – and it should. One way to address this 
concern is to begin with “Suppose” rather than “Assume”, 
and to see the whole proof as a big “If”. I’m not saying my 
premise is true – I’m asking what follows if it is true. If 
what follows is eventually clearly a nasty contradiction or 
absurdity, it means that my opening statement must have 
been false. But students often seem to feel that it’s really 
a bit more complicated than this. Supposing something 
that isn’t true (even if you don’t officially ‘know’ yet that 
it’s false) is really quite a problematic thing to do. Once 
I suppose something that is false, that moves me into a 
counterfactual mathematical world. How on earth should 
I know what the rules are for operating in that world? 
For example, suppose that 1 + 1 =  3. What follows from 
that? Should I double both sides and get 2 + 2 =  6? Or 
should I add 2 to both sides and get 2 + 2 = 5? Which 
step is ‘correct’ in this counter factual world? What 
does 2 + 2 equal? Of course, in a sense, that is the whole 
point. The fact that in this world 5 =  6 should tell us that  
1 + 1 =  3 is false. (Or maybe it’s the other way round, and  
1 + 1 =  3 is even more obviously false than 5 =  6 is?) 
But the idea that there are valid steps to perform in the 
counterfactual world is a bit strange. The teacher might 
place a tick beside each line of working, but what does 

that signify? Once I assume something like , how

can anyone really comment on the ‘correctness’ of any 
subsequent lines? It is not that I eventually, after several 
correct steps, ‘arrive’ at a contradiction, as people often 
say – it’s contradictions all the way down! It’s really a 
matter of judgment how brazen the contradiction needs 
to be before I quit and consider the proof completed – 
how far I decide I need to go before I anticipate that the 
reader will accept my use of a contradiction symbol. In 
more advanced work, arriving at ‘  is rational’ would 
count as a contradiction, and we would stop there! 

So, the students’ objections make a lot of sense. Asking 
a question like ‘If Pythagoras’s Theorem weren’t true, 
what would follow from that?’ is an impossible question. 
Saying ‘We assume that everything else works as  
normal – we just suppose that one false thing’ doesn’t 
seem to help. Assuming that 1 + 1 =  3, it is impossible 
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to say what 2 + 2 should equal, so we’re unable to 
proceed to the next line. Making an assumption like that 
‘breaks maths’, and so ought to stop us in our tracks. 
Principles like ‘multiplying both sides of an equation 
by the same amount preserves the equality’ don’t seem 
to work any more – or, at least, we feel unsure whether 
we can rely on them. This is not a weird property of 
arithmetic statements – it’s always the case when we 
try to operate based on a false premise. The first few 
mathematical steps look reasonable just because we’re 
not astute enough to see that everything that we are 
writing is false. We deceive ourselves into thinking that 
each line ‘follows’ from the previous line in the normal 
way, and we are kind of doing normal mathematics, 
but we are (wittingly) writing nonsense; we pretend to 
be shocked when a contradiction eventually ‘appears’. 
Even worse, students sometimes ask, is there possibly 
a danger that ‘two wrongs could make a right’, and we 
could slip back into truth from our initially false starting 
point? These can be difficult questions to resolve to the  
students’ satisfaction. 

I think the biggest difficulties students have with proof by 
contradiction are not always failures to understand the 
basic logic, but problems knowing what they are really 
doing when proceeding in ‘counterfactual mathematical 
worlds’, and a general sense that the whole thing  
feels dubious. 

Notes 

1. Students sometimes feel that all that they have 
proved is that  cannot be expressed as a simplified 
fraction, but that it perhaps could be expressed as an 
unsimplified one, in which either the numerator or 
the denominator or both contained some ‘decimals’. 

2. The step where we say that q2 = 2m2 means that q is 
even perhaps itself needs proving? And this suggests 
a rather different approach to the standard proof. 
One way to do this is to start talking about square 
numbers, rather than surds (see Foster, 2012). The 
teacher starts by asking, “Can you find a square 
number that is twice another square number?” 
Students will try doubling a few square numbers and 
notice that none of their doubles is square, or else 
they will try halving squares, but they don’t get any 
squares that way either. They may offer 02 =  2 × 02, 
which is good thinking, but you can retort that 0 is 
just one square number rather than “another square 
number”. Students may notice that doubling twice 
works: when you double 4 you get 8, which isn’t 
square, but when you double 8 you get 16, which 
is – and this always seems to work. So, four times a 
square number always seems to give another square 
number, but with doubling it never seems to work, 
and after a while someone will offer the conjecture 
that it is impossible, and you can ask, “Why should 
it be impossible?” Of course, this is equivalent to  

being irrational, because  is equivalent to

p2 = 2q2, where p and q are positive integers. 

The easiest way to see why p2 = 2q2 cannot happen 
is by using prime factorisation (Coles, 2005).  
If p = axbycz … where a, b, c, … are distinct primes and  
x, y, z, … are positive integers, then p2 = a2xb2yc2z … , and we 
can see that all the indices have to be even. The problem 
with 2q2 is that we have an extra factor of 2, so in the 
prime factorisation of 2q2 it is necessarily the case that 2 
will appear to an odd power. This means that 2q2 cannot 
possibly equal p2, because an odd power of 2 cannot equal 
an even power of 2. This is nice, because immediately we 
see what it is about the 2 that is problematic, and why 
having 4 instead would be fine. The 2 is a problem not 
because it’s prime but because it isn’t a square number. 
Without doing any more work, we can see that p2 = 3q2 
will fail for exactly the same reason as p2 = 2q2, as will 
something like p2 = 6q2, even though 6 is not prime. So, in 
general, p2 = kq2 will have solutions for positive integer 
p and q if and only if k is square. And this is equivalent 
to saying that  is rational for integer k if and only if k  
is square. 

3. In cases like this, ‘contradiction’ is not exactly the 
right word, as we don’t directly contradict the initial 
statement; however, we arrive at something that is 
clearly false. Maybe we should call these ‘proof by 
absurdity’ or something? 

4. It has been pointed out that Euclid’s original proof of 
this is not actually a proof by contradiction. Indeed, 
whether proofs are technically ‘by contradiction’ is 
often a subtle matter. Hamkins (2020, pp. xvii–xviii) 
commented, “I do not find proofs by contradiction 
…to be a natural or robust mathematical category. 
Such a proof, after all, might contain essentially the 
same mathematical insights and ideas as a nearby 
poof that does not proceed by contradiction.” For 
example, uniqueness proofs, such as the uniqueness 
of an inverse, are often done by contradiction. You 
start by supposing that there are two inverses, and 
you call them i and j. Perhaps you should say “two 
distinct inverses”, although people often don’t. Then, 
you go through your algebra and end up with i = j. 
What does that tell you? Students will often say that 
it means that they are ‘the same inverse’, or that ‘all 
inverses are equal’. Is this a proof by contradiction? It 
doesn’t seem to be, unless you were careful to state 
that i ≠ j at the start. Then, the argument would be 
that you supposed that i and j were distinct inverses, 
and now you’ve found that they are equal, which 
contradicts the statement that they were different. If, 
on the other hand, you don’t bother to say that they 
are distinct inverses, then what follows from finding 
that they were equal? Might there not still be another 
inverse out there somewhere, different from your i 
and j – call it k – which is different from those two? 
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Does the fact that i and j turned out to be the same 
necessarily prove that there can be no others? You 
perhaps need instead to start by saying something 
like, “Suppose that i and j are any two inverses’. Then, 
concluding that i = j really means something, because 
we’ve shown that any two things that are inverses 
must be equal to each other, and therefore that all 
inverses are equal. It may seem pedantic to belabour 
this, but sometimes by being sloppy about things like 
this we simply confuse students more. 
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