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I came to the University of Nottingham in 2012 for one 
reason only: Malcolm Swan. I had known Malcolm for 
many years, mainly through the Institute of Mathematics 
Pedagogy that Anne Watson and John Mason organize 
each summer at Oxford. At Nottingham, I had the great 
privilege of working with Malcolm on design research 
projects, in particular the Mathematics Assessment 
Project (http://map.mathshell.org/index.php). The 
design of those 100 formative assessment lessons was 
truly collaborative, and it was a joy to work with Malcolm 
alongside Clare Dawson, Sheila Evans and Marie Joubert. 
Malcolm had the ability to raise a draft task to the next 
level. I would turn up to a meeting with what I thought 
was a pretty good task, and Malcolm would say something 
nice about it – and then, with a few deft moves, transform 
it into something vastly greater! It was a wonderful 
experience to be part of, and it was just as enjoyable to 
watch him do the same thing to other people’s tasks – and 
I became fascinated by how he facilitated this process of 
collaborative lesson design.

Malcolm was an excellent mathematician, and was always 
interested in the underlying mathematics behind a task, 
as well as any tangential mathematics that could come 
out of working on it. I remember several occasions where 
Malcolm used the slide shown in Figure 1, asking “Which 
statements define proportion?”.

Fig.�1 Which statements define proportion?

At first glance, it looks like a task you could give to 
secondary-age pupils, but, like everything from Malcolm, 
it has hidden depths! In particular, the pair of statements:

• when x doubles in value, y doubles in value, and

• the graph of y against x is continuous

always provoked much discussion. Are these two, taken 
together, sufficient to determine that y is proportional to x?

The first statement on its own is often used in classrooms 
to explain to pupils what direct proportion is. But there 
is nothing special about doubling here. More generally, 
what is meant is that if x is scaled up m times then y is 
also scaled up m times, and t�at t�i� i� t��e �o� an� �. This 
is quite a complicated statement! Algebraically, � ן x is 
equivalent to y = kx, where k is a constant. So if x suddenly 
becomes mx, then y must become k(mx) = m(kx) = my. 
So, multiplying x by any constant will multiply y by the 
same constant. That is the essence of proportionality, 
as understood algebraically. But the two constants, k 
and m, make this quite a complicated idea to express in  
words, so it is perhaps understandable that ‘doubling’ is 
sometimes used to stand for all possible scalings.

It seems natural to think that this ‘if x doubles then y 
doubles’ rule must produce a straight line through the 
origin, but this is to confuse a statement with its converse. 
If y is proportional to x, then it follows that if x doubles 
then y doubles. But the converse turns out not to be true. 
There is some nice mathematics here. It is tempting to 
think that the functional equation f(mx) = mf(x) implies 
that f is a linear function, but in fact the definition of 
linearity has t�o parts to it:

  �o�o�eneit�: f(mx) = mf(x)
but also  additi�it�: f(x1) + f(x2) = f(x1 + x2).

Additivity ֜ homogeneity, since, for example, if we let  
x1 = x2 then our additivity condition becomes f(x1) + f(x1) =  
f(x1 + x1), or 2f(x1) = f(2x1). But homogeneity ֙ additivity. 
This suggests that perhaps we will be able to find a 
function such that, whenever you double the x value, the 
y value doubles, but where y is not proportional to x? You 
might like to have a go before reading on.
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x-value of x1, will intersect it again at 2x1, 4x1, 8x1, and 
so on. Clearly, it would be possible to make this kind of 
solution work for any multiplier (e.g. 3 instead of 2), just 
by using a logarithm to a different base (3 in this case). 
But we cannot make a �in�le formula like this which will 
work for �o�e t�an one multiplier.

Malcolm had a wonderful way of digging into ostensibly 
elementary mathematics and bringing out something at 
just the right level for teachers to appreciate something 
new. He constantly placed the teacher in the role of 
learner in order to allow them a better understanding 
of pupils’ experiences. And he just loved working with 
people on mathematics.

Notes

1. My former colleague, John Cooper, pointed out that a nicer solution 
along these lines would be: f(x) = x if xאԷ; f(x) = 2x if � בԷ.

2. I am grateful to Professor David Jabon at DePaul University for 
pointing me to http://eqworld.ipmnet.ru/en/solutions/fe/
fe1111.pdf

One possibility is to go for something discontinuous. For 
example,

f(x) =  2x, x ∈{1, 2, 4, 8, 16, 32, …}

 3x, x ∈{3, 6, 12, 24, 48, …}.

Here, when any valid x value is doubled, f(x) also doubles, 
but it is clear from Figure 2 that we really have t�o series 
of points, one on the line y = 2x and the other on the line 
 y = 3x, and so it would be wrong to say that f(x) ן x, since 
it depends which line of dots you are on (Note 1).

Well, OK, we have done it, but this is a very contrived 
and inelegant example – and quite unlike the kinds of 
functions pupils are used to meeting in school. What we 
really want is a contin�o�� example (Malcolm’s second 
criterion), where the functional equation f(2x) = 2f(x) is 
satisfied but y β kx. 

Of course, Malcolm knew all about the mathematics of 
this, but he had a lovely way of always letting other people 
score the goals! When he presented at a conference, it 
was a delegate (Note 2) who posed the equation:

y = xsin(2Ɏlog2|x|).

We can see here that replacing x by 2x gives

2xsin(2Ɏlog2|2x|) = 2xsin(2Ɏ(log22 + log2|x|)  
 = 2xsin(2Ɏ(1 + log2|x|)  
 = 2xsin(2Ɏ + 2Ɏlog2|x|)  
 = 2xsin(2Ɏlog2|x|) = 2y.

The logarithm to base 2 (multiplied by 2Ɏ) is a neat way to 
convert multiplication by 2 into the addition of 2Ɏ, which 
(since this is the period of the sine function) has no effect 
on the value of the sine, meaning that it is only the 2 at 
the front of the equation which remains. Looking at the 
graph (shown in Figure 3), we can see how any straight 
line through the origin that intersects the curve at an 
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Fig. 2 A discontinuous counterexample

Fig.�3 The graph y = xsin(2Ɏlo�2|x|)
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