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In these ‘Questions pupils ask’ articles, I often address 
unusual – even obscure – questions that pupils sometimes 
ask, because I find them interesting and thought-
provoking for reflecting on teaching. But here I want to 
address a question that is not like this – I think this is a 
question every thoughtful student of statistics is bound to 
ask. But perhaps this is a feature of how I teach standard 
deviation, and if I taught it better maybe no one would ask 
this question?

Consider a small data set consisting of just 5  
observations (𝑛 = 5):

 1 7 8 9 15

These numbers have been carefully chosen to lead to 
integer mean and standard deviation. Although this is 
‘unrealistic’, I think using ‘nice’ numbers like this when 
introducing ideas allows students to focus on the structure 
of what’s going on, and hopefully build strong conceptual 
understanding, before applying what they have learned to 
the ‘messiness’ of more realistic situations later (Dudek, 
1981; Read, & Riley, 1983).

Calculating the mean of these numbers is straightforward. 
There are 5 observations, and so we divide the sum by 5:

To find the variance, we first find the deviations (residuals) 
of each observation from this mean (8), and then square 
them and add them up. The sum of squared deviations is

 (1 − 8)2 + (7 − 8)2 + (8 − 8)2 

 + (9 − 8)2 + (15 − 8)2 = 100.

Now, we need to divide by something, because the more 
observations there are in our dataset the higher our sum 
of squared deviations is likely to be, and we would want 
to have a measure of variance that is independent of 
sample size. But exactly what number we divide by is the 
complicated part here, and this is the issue which leads to 
the question posed in the title.

If we are only interested in this particular dataset of 5 
observations, then this is our entire population, and we 
simply divide the sum of squared deviations by 5. It is just 

a fact that their mean is 8, and the squared deviations from 
8 sum to 100, and so the variance comes to  = 20. This 
is a descriptive, not inferential, statistic, and so there is no 
question of doing any statistical tests of significance, since 
we’re not treating it as a sample taken from any larger 
population. It’s a precise value, not an estimate of anything 
else, and it doesn’t come with any error bounds. It just is 
what it is.

However, if we do view this dataset as a sample of 5 
observations, pulled out randomly from some larger 
population, and our purpose in doing calculations with this 
sample is to be able to say something about the population 
from which it comes, then we’re in the business of inferential 
statistics. In that case, we want an unbiased estimate of the 
population variance, meaning that if we keep pulling out 
these 𝑛 = 5 samples, working out the variance of each one, 
and then averaging these variance values across all of these 
samples, we will get a value that gets as close as we wish to 
the true population variance as we take more and more of 
these 𝑛 = 5 samples. (However close you decide you wish 
to get, you can always get closer than that just by taking 
enough 𝑛 = 5 samples.) To do this, it turns out that instead 
of dividing our 20 by 5, we need to divide it by 4 (i.e., 5 – 1), 
and so we obtain a sample variance of 25 (and so a sample 
standard deviation of  = 5). I find that this difference 
is generally puzzling to students: “Why do we divide by  
𝑛 − 1 instead of 𝑛 ?” I think they are right to be puzzled 
about this, and I find that it isn’t the easiest thing to explain.

The problem for me is that the concepts that we might 
want to draw on to explain this discrepancy (degrees 
of freedom, unbiased estimators) are harder than the 
concepts that we are trying to introduce (variance, 
standard deviation). Students can build a good intuitive 
sense of standard deviation as ‘measure of spread’ – just 
like the range, except that it takes account of all of the data 
points, not just the most extreme ones at each end. It can be 
a nice task to devise data sets with identical ranges but for 
which the standard deviations are dramatically different. 
This shows the added value of a standard deviation over 
a simple calculation of range, which could be entirely 
dependent on two highly untypical outliers (the most 
unrepresentative data points). But this nice thinking easily 
gets side-tracked into concerns about dividing by 𝑛  versus 
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dividing by 𝑛 − 1 and attempts at justifying this. Students 
might wonder how it can possibly matter why we are 
working out the variance. How can we have two different 
formulae, depending on what we are planning to do with 
this value that we calculate? And why didn’t we have this 
problem with the sample mean?

The way I like to think about this is to appreciate that once 
we get into inferential statistics there are now two means 
in play. There’s the population mean, 𝜇, which we treat as a 
fixed but unknown quantity, and there’s the sample mean, 
𝑥̅, of our particular sample. If we are lucky, 𝑥̅ will be close 
to 𝜇. This is more likely to be the case if we have a large 
sample, so, with a sample of just 5 observations, it could 
well be that there is a bit of a difference between 𝑥̅ and 𝜇. 
Although we know this, we of course have no idea whether 
our 𝑥̅ is less than or greater than the true 𝜇. However, 
because the mean is an unbiased estimator, if we take lots 
of 𝑛 = 5 samples, calculate their means, and average these 
values, we will get arbitrarily close to the population mean 
𝜇 as we take more and more of these 𝑛 = 5 samples. I tend 
to keep saying “𝑛 = 5 samples” because students can be 
confused between taking lots of samples and taking larger 
samples, both of which improve our estimate of the mean, 
but are distinct.

The problem with the variance comes because we want to 
calculate the deviations of each data point ‘from the mean’ 
– but which mean? Is it 𝑥̅ or 𝜇? We would like it to be 𝜇, but 
we don’t know 𝜇, and so we have to use 𝑥̅, as that’s all we 
know. So now when we calculate the mean of our sample, 
and get 8, this is not necessarily the population mean – it’s 
our best estimate of the population mean, but it’s probably 
wrong. It’s all we have, so we have to use it, and, so when 
we calculate

 (1 − 8)2 + (7 − 8)2 + (8 − 8)2 

 + (9 − 8)2 + (15 − 8)2 = 100,

in each bracket we are subtracting the sample  
mean 𝑥̅ = 8.

Why should this matter? It’s probably close to the 
population mean, after all. The issue is that when we get 
to the final bracket in our sum of squares, the 15 isn’t 
providing any new information. In the expression below, 
the blank box has to be 15, because we can work it out 
from the other data points and the 8, which we’ve had to 
calculate already:

 (1 − 8)2 + (7 − 8)2 + (8 − 8)2 

 + (9 − 8)2 + (∎ − 8)2.

Even if we just know that four of the data points are 
1, 7, 8 and 9, because we know that the mean is 8, we can 
calculate what the final data point must be:

∎ = 5 ×  8 − (1 + 7 + 8 + 9) = 15.

This means that the fifth data point (it could equally 
apply to any other of the data points) is bringing in no 

new information, once you’ve worked out that the mean 
is 8. So, the number of degrees of freedom here is 4, not 
5, and this means that 4 is the appropriate number to 
divide by. Once you’ve calculated the 8, you’ve used up 
one of your degrees of freedom, and so you only have 4 
independent pieces of information left. We can think of 
this as the ‘cost’ of pretending that the sample mean is 
really the population mean. Another way to say this is 
that although there are 𝑛  independent observations in 
the original sample, there are only 𝑛 − 1 independent 
deviations from the mean, as those deviations necessarily 
(by definition) have a sum of zero. (We could equally 
work out ∎ by summing the deviations from the other 
four values. We can work out that − 7, − 1, 0 and 1  
sum to − 7, and so the final deviation must be + 7, which 
means that ∎ − 8 = 7 and so ∎ = 15, as before.)

I still tend to find students unconvinced at this point. They 
might agree that the number of degrees of freedom is 4 
rather than 5, but why do we divide by the number of 
degrees of freedom, rather than the total number of data 
points? So I also like to offer a more qualitative argument 
(Note 1). It is fairly intuitive that deviations from the sample 
mean are likely to be smaller than they would be from the 
true population mean. After all, the sample mean has been 
calculated to be precisely the mean of this particular data 
set, whereas the population mean in general won’t be the 
same. So the variance will almost always be smaller when 
it’s calculated by using the sum of the squared deviations 
from the sample mean than when it’s calculated using the 
sum of the squared deviations from the true population 
mean. So, the variance we calculate from our sample is 
on average going to be smaller than it should be, and it 
turns out that we can correct this by dividing the sum of 
squared deviations by a smaller number than 𝑛 , so that 
the answer comes out bigger. Of course, this doesn’t tell us 
that 𝑛 − 1 is the right number to divide by (as it could be  
𝑛 −  or something, or it could even vary with 𝑛 ), but it 
at least points us in the right direction, and highlights 
that dividing by  is certainly not going to give us the best 
estimate for, 𝑛  the population variance. It means that the 
‘sample variance’ (i.e., the unbiased estimate, with the  
𝑛 − 1 denominator) is not the ‘sample’s variance’ (i.e., the 
biased estimator, with the denominator of 𝑛 )!

A formal proof involves carefully exposing the distinctions 
between things like 𝐸(𝑋2) and , and is quite algebra-
heavy (see Toller, 2009, p 18, for a careful treatment). But 
we can extend this qualitative argument to make it a bit 
more quantitative while avoiding the fiddly manipulation. 
When we use the sample mean instead of the population 
mean, the magnitude of each residual is going to be wrong 
by |𝜇−𝑥̅|. This means that the sum of the squares of the 
residuals will be too low by 𝑛 (𝜇 − 𝑥̅)2, and so the difference 
between the expected values of the biased and unbiased 
variances will be the expected value of (𝜇 − 𝑥̅)2. This is 
just the variance of the sampling distribution of the mean, 
which is , and so, when we calculate the variance of the 
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sample (the biased estimator), we underestimate  by :

 −  = biased estimator.

Rearranging, 

  = biased estimator,

  = biased estimator,

 × biased estimator.

The variance of the sample underestimates the variance 
of the population, so we need to scale it up by  (which 
is always greater than 1), and this is known as Bessel’s 
correction (Note 2).

Finally, it can be reassuring to see the difference in 
a simulation. For example, if you use R to take 104 
samples of size 5 at random from a normal distribution 
with mean 8 and standard deviation 5, and calculate 
the variance of each sample, using both the biased 
estimator (with denominator 𝑛 ) and the unbiased 
estimator (with denominator 𝑛 − 1), you can compare 
the two distributions obtained (Figure 1, Note 3). For this 
simulation, the mean of the variances comes to 20.07 for 
the biased variances and 25.09 for the unbiased variances 
(correct to 2 decimal places), nicely illustrating that 
the biased estimator is lower than the true population 
value of 25, and the quotient  exactly matches  
Bessel’s correction.

Figure 1:  The variance of 104 samples with 𝑛 = 5 calculated  
using both 𝑛  (biased) and 𝑛 − 1 (unbiased) as denominators.

Notes
1. Another informal argument is that, in the case of an  

𝑛 = 1 sample, we should really be unable to calculate a 
variance, and so the division by zero that would result 
from an 𝑛 − 1 denominator seems appropriate. Using 
a denominator of 𝑛  would give us a value that could 
have no meaning (Rosenthal, 2015). (However, you 
might argue that zero is a perfectly reasonable answer  
when 𝑛 = 1.)

2. Note that, although Bessel’s correction produces an 
unbiased estimate of the variance, its square root is 
not an unbiased estimator of the population standard 
deviation (and the bias in the standard deviation is 
that it is always an underestimate).

3. For the R code, see: www.foster77.co.uk/
Simulation%20of%20biased%20and%20
unbiased%20variance%20estimators.R
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