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Appreciating the second-derivative test 
 

Colin Foster 

When teaching calculus, I find that students often seem 
to dislike the second-derivative test for classifying 
stationary points. They accept the need to find the first 
derivative, in order to discover the number and location 
of any stationary points, by finding places where the 
first derivative is zero. But then differentiating for a 
second time seems like a lot of work, and they worry 
that it will all be in vain if the second derivative turns 
out also to be zero at a stationary point, meaning that 
the test is inconclusive. For example, if ݂(ݔ) = ݔ) − 3)ସ, 
then the first derivative, ݂Ԣ(ݔ) = ݔ)4 − 3)ଷ, which is 
zero only when ݔ = 3, so we have a single stationary 
point at (3, 0). If we then calculate ݂ԢԢ(ݔ) = ݔ)12 − 3)2, 
we find that ݂ԢԢ(3) = 0 also, so the second-derivative 
test tells us nothing. 
 
At this point, students are normally expected to give up 
with derivative tests and determine the nature of the 
stationary points by evaluating ݂Ԣ a little to the left of 
the stationary point and a little to the right of the 
stationary point. They then conclude the nature of the 
stationary point based on whether ݂Ԣ is negative 
(݂ decreasing) before and positive (݂ increasing) 
afterwards (a local minimum) or ݂Ԣ is positive before 
and negative afterwards (a local maximum). Having ݂Ԣ 
positive before and after, or negative before and after, 
correspond respectively to an increasing point of 
inflection and a decreasing point of inflection. 
 
Indeed, I find that students often prefer merely to 
evaluate ݂ itself, either side of the stationary point. This 
seems sensible, since there is always a chance of an 
error in ݂ Ԣ, and going back to the original, given function 
seems safer. If both function values are greater than 
they are at the stationary point, then we have a local 
minimum, and if they are both less then we have a local 
maximum. Less to the left and greater to the right 
corresponds to an increasing point of inflection, and 
greater to the left and less to the right corresponds to a 
decreasing point of inflection. 
 
Students often seem to be confused about the ‘small 
distance’ that needs to be used for the deviation either 
side of the stationary point. I find that they will 
frequently use differences such as 0.1 or 0.01, on the 
grounds that these are ‘small numbers’. But small 
relative to what? I think that this behaviour may derive 
from how differentiation has been presented originally, 
in terms of tiny Ɂݔ increments, and students worry that 
their answers will be invalid if they use a value that is 
‘too large’. What they often seem not to realise is that 
the sign of ݂Ԣ cannot change between consecutive 
stationary points, so any convenient (e.g. integer) value 
within that interval will give the same result (Note 1). 
For our function, ݂ᇱ(ݔ) > 0 for all ݔ > 3 and ݂ᇱ(ݔ) < 0 

for all ݔ < 3, so there is no need to be using a calculator 
to evaluate ݂ᇱ(2.999) and ݂ᇱ(3.001) when ݂ᇱ(0) and 
݂ᇱ(4), say, would be just as informative. The same goes 
for checking whether ݂ itself is greater or less either 
side of the stationary point than it is at the stationary 
point. 
 
Another reason that students seem to dislike the 
second-derivative test, even when ݂ԢԢ(ݔ) ് 0, is that 
identifying a local maximum with ݂ԢԢ(ݔ) < 0 and a local 
minimum with ݂ԢԢ(ݔ) > 0 somehow feels 
psychologically the wrong way round. (“Maximum is 
negative and minimum is positive?”) We may explain 
that a local minimum involves a function whose 
gradient increases through zero (from negative – 
downhill – to positive – uphill), and so positive 
gradient-of-the-gradient corresponds to a local 
minimum. However, students still often seem uneasy 
with this, and worry that they might have it the wrong 
way round, which I think also discourages them from 
using the second-derivative test. 
 
I will now describe two ways in which I try to encourage 
a more positive appreciation of second derivatives. 
 
Higher derivatives 
 
Perhaps students would be more comfortable with the 
second-derivative test if they knew that they could 
continue with the process in the case where ݂ԢԢ is zero 
at a stationary point. Rather than giving up when ݂ԢԢ is 
zero, it is usually possible to arrive at a conclusion if we 
just continue differentiating. For our example, with 
(ݔ)݂ = ݔ) − 3)ସ, we can continue differentiating past 
݂ᇱᇱ(ݔ) to higher derivatives, if we wish: 

(ݔ)݂    = ݔ) − 3)ସ 
  ݂Ԣ(ݔ) = ݔ)4 − 3)ଷ 
 ݂ԢԢ(ݔ) = ݔ)12 − 3)2 
݂ԢԢԢ(ݔ) = ݔ)24 − 3) 
୍݂୚(ݔ) = 24. 

If the first non-zero derivative (at the stationary point) 
is an even-numbered derivative, such as here, where 
the fourth derivative is the first one that is not zero at 
the stationary point, then we can conclude exactly as we 
would for the second derivative. Because the fourth 
derivative is positive, we have a local minimum. If it 
were negative, we would have a local maximum. (The 
zero – inconclusive – case doesn’t apply, because we are 
focusing on a non-zero derivative.) 
 
If the first time that we get a non-zero derivative at the 
stationary point is for an odd-numbered derivative, 
then if this value is positive we have an increasing point 
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of inflection, and if it is negative then we have a 
decreasing point of inflection. We can see an example of 
such a function if we take our first derivative above, 
ݔ)4 − 3)ଷ, and call it ݃(ݔ). 
 
Now, 

(ݔ)݃    = ݔ)4 − 3)ଷ 
  ݃Ԣ(ݔ) = ݔ)12 − 3)2 
 ݃ԢԢ(ݔ) = ݔ)24 − 3) 
݃ԢԢԢ(ݔ) = 24. 

Starting with ݃ , our first non-zero derivative is the third 
derivative, ݃ԢԢԢ, and it is positive, telling us that the 
function ݃ has an increasing point of inflection at (3, 0). 
 
The extra complexity of higher derivatives seems 
worthwhile to complete the story and avoid leaving 
students stuck when the second derivative turns out to 
be zero at a stationary point (Note 2). Indeed, we can 
think of the second-derivative test itself as being 
motivated by discovering the first derivative to be zero: 
the principle is that we keep differentiating until we 
find a derivative that isn’t zero. 
 
Why does this work? The positive fourth derivative that 
we obtained for ݂ means that the third derivative is 
increasing. Since the third derivative is zero at the 
stationary point, the third derivative is increasing 
through zero (i.e. from negative to positive). Since the 
third derivative is the gradient of the second derivative, 
this means that the second derivative must be a 
minimum at the point (i.e., a function with gradient 
increasing through zero). Since the second derivative is 
also zero at the stationary point, it must be positive to 
the left and also positive to the right, meaning that the 
first derivative is increasing on both sides of the 
stationary point. Since the first derivative is also zero at 
the stationary point, it must be increasing through zero, 
meaning that the original function has negative 
gradient on the left and positive gradient on the right, 
and is therefore a minimum. You can always work 
through this reasoning, derivative by derivative, for as 
long as needed, to see why these results follow, and it 
doesn’t require any algebra. 

Concavity 
 
My other attempt to help students become more 
comfortable with second derivatives has been to teach 
about concavity before meeting the second-derivative 
test. We will have previously spent lots of time on the 
big question, “What does ݂Ԣ tell us about ݂?” We will 
have found that the sign of ݂Ԣ tells us whether ݂ is 
increasing or decreasing, and that the magnitude of ݂Ԣ 
tells us how quickly it is doing so. After this, the next big 
question is, “What does ݂ԢԢ tell us about ݂?”, and this is 
harder to think about, because we have to use ݂Ԣ as an 
intermediary between ݂ԢԢ and ݂. If ݂ԢԢ is positive, then ݂Ԣ 
is increasing, and if ݂Ԣ is increasing then the gradient of 
݂ is either becoming more positive or less negative. So 
݂ԢԢ being positive corresponds to ݂ being concave 
upwards.  I try to do all of this without suggesting that 
݂Ԣ necessarily has to be zero anywhere. The second 
derivative is informative everywhere, not just at 
stationary points. A similar argument shows that ݂ԢԢ 
being negative corresponds to ݂ being concave 
downwards. Once students are confident in 
interpreting concavity, the second-derivative test is just 
an application of this, in the situation in which we are 
interested in concavity at places where ݂Ԣ happens to be 
zero. 
 
Notes 
 
1. We are of course assuming throughout that we 

have nice, continuous and repeatedly-
differentiable functions, of the kind typically 
encountered in school! 

2. In these examples, the first non-zero derivative 
happens to be a constant (i.e. independent of ݔ), but 
of course that is not essential. What matters is that 
the derivative is non-zero at the stationary point in 
question. 
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