Appreciating the second-derivative test

Colin Foster

When teaching calculus, I find that students often seem
to dislike the second-derivative test for classifying
stationary points. They accept the need to find the first
derivative, in order to discover the number and location
of any stationary points, by finding places where the
first derivative is zero. But then differentiating for a
second time seems like a lot of work, and they worry
that it will all be in vain if the second derivative turns
out also to be zero at a stationary point, meaning that
the test is inconclusive. For example, if f(x) = (x — 3)*,
then the first derivative, f'(x) = 4(x — 3)3, which is
zero only when x = 3, so we have a single stationary
point at (3, 0). If we then calculate f"'(x) = 12(x — 3)?,
we find that f''(3) = 0 also, so the second-derivative
test tells us nothing.

At this point, students are normally expected to give up
with derivative tests and determine the nature of the
stationary points by evaluating /' a little to the left of
the stationary point and a little to the right of the
stationary point. They then conclude the nature of the
stationary point based on whether f’ is negative
(f decreasing) before and positive (f increasing)
afterwards (a local minimum) or f’ is positive before
and negative afterwards (a local maximum). Having f’
positive before and after, or negative before and after,
correspond respectively to an increasing point of
inflection and a decreasing point of inflection.

Indeed, I find that students often prefer merely to
evaluate f itself, either side of the stationary point. This
seems sensible, since there is always a chance of an
errorin f', and going back to the original, given function
seems safer. If both function values are greater than
they are at the stationary point, then we have a local
minimum, and if they are both less then we have a local
maximum. Less to the left and greater to the right
corresponds to an increasing point of inflection, and
greater to the left and less to the right corresponds to a
decreasing point of inflection.

Students often seem to be confused about the ‘small
distance’ that needs to be used for the deviation either
side of the stationary point. I find that they will
frequently use differences such as 0.1 or 0.01, on the
grounds that these are ‘small numbers’. But small
relative to what? [ think that this behaviour may derive
from how differentiation has been presented originally,
in terms of tiny 8x increments, and students worry that
their answers will be invalid if they use a value that is
‘too large’. What they often seem not to realise is that
the sign of f' cannot change between consecutive
stationary points, so any convenient (e.g. integer) value
within that interval will give the same result (Note 1).
For our function, f'(x) > 0 forall x > 3 and f'(x) <0
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for all x < 3, so there is no need to be using a calculator
to evaluate f'(2.999) and f'(3.001) when f'(0) and
f'(4), say, would be just as informative. The same goes
for checking whether f itself is greater or less either
side of the stationary point than it is at the stationary
point.

Another reason that students seem to dislike the
second-derivative test, even when f”(x) # 0, is that
identifying a local maximum with /"' (x) < 0 and alocal
minimum  with  f"(x) >0  somehow feels
psychologically the wrong way round. (“Maximum is
negative and minimum is positive?”) We may explain
that a local minimum involves a function whose
gradient increases through zero (from negative -
downhill - to positive - uphill), and so positive
gradient-of-the-gradient corresponds to a local
minimum. However, students still often seem uneasy
with this, and worry that they might have it the wrong
way round, which I think also discourages them from
using the second-derivative test.

[ will now describe two ways in which [ try to encourage
a more positive appreciation of second derivatives.

Higher derivatives

Perhaps students would be more comfortable with the
second-derivative test if they knew that they could
continue with the process in the case where f"' is zero
at a stationary point. Rather than giving up when f"' is
zero, it is usually possible to arrive at a conclusion if we
just continue differentiating. For our example, with
f(x) = (x — 3)* we can continue differentiating past
f"(x) to higher derivatives, if we wish:

f(x)=(x-3)*
f'(x) = 4(x-3)°
f'(x) = 12(x - 3)?
F(x) = 24(x — 3)
FV(x) = 24.

If the first non-zero derivative (at the stationary point)
is an even-numbered derivative, such as here, where
the fourth derivative is the first one that is not zero at
the stationary point, then we can conclude exactly as we
would for the second derivative. Because the fourth
derivative is positive, we have a local minimum. If it
were negative, we would have a local maximum. (The
zero - inconclusive - case doesn’t apply, because we are
focusing on a non-zero derivative.)

If the first time that we get a non-zero derivative at the
stationary point is for an odd-numbered derivative,
then if this value is positive we have an increasing point



of inflection, and if it is negative then we have a
decreasing point of inflection. We can see an example of
such a function if we take our first derivative above,
4(x — 3)3,and call it g(x).

Now,
g(x) = 4(x = 3)°
g'(x) = 12(x — 3)?
g"(x) =24(x—3)
g"(x) = 24.

Starting with g, our first non-zero derivative is the third
derivative, g'”, and it is positive, telling us that the
function g has an increasing point of inflection at (3, 0).

The extra complexity of higher derivatives seems
worthwhile to complete the story and avoid leaving
students stuck when the second derivative turns out to
be zero at a stationary point (Note 2). Indeed, we can
think of the second-derivative test itself as being
motivated by discovering the first derivative to be zero:
the principle is that we keep differentiating until we
find a derivative that isn’t zero.

Why does this work? The positive fourth derivative that
we obtained for f means that the third derivative is
increasing. Since the third derivative is zero at the
stationary point, the third derivative is increasing
through zero (i.e. from negative to positive). Since the
third derivative is the gradient of the second derivative,
this means that the second derivative must be a
minimum at the point (i.e., a function with gradient
increasing through zero). Since the second derivative is
also zero at the stationary point, it must be positive to
the left and also positive to the right, meaning that the
first derivative is increasing on both sides of the
stationary point. Since the first derivative is also zero at
the stationary point, it must be increasing through zero,
meaning that the original function has negative
gradient on the left and positive gradient on the right,
and is therefore a minimum. You can always work
through this reasoning, derivative by derivative, for as
long as needed, to see why these results follow, and it
doesn’t require any algebra.
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Concavity

My other attempt to help students become more
comfortable with second derivatives has been to teach
about concavity before meeting the second-derivative
test. We will have previously spent lots of time on the
big question, “What does f’ tell us about f?” We will
have found that the sign of f’ tells us whether f is
increasing or decreasing, and that the magnitude of f’
tells us how quickly it is doing so. After this, the next big
question is, “What does f" tell us about f?”, and this is
harder to think about, because we have to use f' as an
intermediary between ' and f. If f" is positive, then f’
is increasing, and if f” is increasing then the gradient of
f is either becoming more positive or less negative. So
f" being positive corresponds to f being concave
upwards. I try to do all of this without suggesting that
f' necessarily has to be zero anywhere. The second
derivative is informative everywhere, not just at
stationary points. A similar argument shows that f"
being negative corresponds to f being concave
downwards. Once students are confident in
interpreting concavity, the second-derivative test is just
an application of this, in the situation in which we are
interested in concavity at places where f’ happens to be
Zero.

Notes

1. We are of course assuming throughout that we
have nice, continuous and repeatedly-
differentiable functions, of the kind typically
encountered in school!

2. In these examples, the first non-zero derivative
happens to be a constant (i.e. independent of x), but
of course that is not essential. What matters is that
the derivative is non-zero at the stationary point in
question.
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