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Logarithms and their Bases 
  

Colin Foster 
 

 
Which is the larger of these two expressions 

log଻6
log଻5  or 

logଷ6
logଷ5 ? 

I will leave that question hanging while I explain why I 
ask it. 
 
I think that students often have a good understanding 
of many of the laws of logarithms, by linking them to the 
corresponding laws of indices (see Note). For example, 
they know that 𝑏𝑏௣𝑏𝑏௤ ؠ 𝑏𝑏௣ା௤ , and so 

 log௕(𝑏𝑏௣𝑏𝑏௤) ؠ log௕(𝑏𝑏௣ା௤) ؠ ݌ +  .ݍ
Re-expressing this in terms of ݉ = 𝑏𝑏௣ and ݊ = 𝑏𝑏௤ gives 
us the identity log௕ ݉݊ ؠ log௕ ݉ + log௕ ݊. For 
analogous reasons, division involves subtracting the 
logarithms and powers involve multiplication, and 
these can be fairly easy to remember, because they fit a 
nice pattern. 
 
However, even for myself, I find the change of base 
formula much less intuitive. For two bases, 𝑏𝑏 and 𝑐𝑐, this 
is often written as: 

log௕ 𝑎𝑎 = log௖ 𝑎𝑎 . log௕ 𝑐𝑐. 
The chain of ‘𝑎𝑎 to 𝑏𝑏’ being ‘𝑎𝑎 to 𝑐𝑐 times 𝑐𝑐 to 𝑏𝑏’ may make 
it easy for the student to remember (going from 𝑎𝑎 to 𝑏𝑏 
via 𝑐𝑐). But I think that this formula is rarely well 
understood. It is easy to get lost in the proof amid all the 
different symbols. If ݔ = log௖ 𝑎𝑎 and ݕ = log௕ 𝑐𝑐, then in 
exponential form we have 𝑎𝑎 = 𝑐𝑐௫  and 𝑐𝑐 = 𝑏𝑏௬ , so that 
𝑎𝑎 = (𝑏𝑏௬)௫ = 𝑏𝑏௫௬ . This means that  

log௕ 𝑎𝑎 = ݕݔ = log௖ 𝑎𝑎 . log௕ 𝑐𝑐. 
So, it’s true, but this dance with the symbols doesn’t 
really give me much insight, because I find myself 
getting bogged down in all of the different letters, and 
struggling to remember which letters are which. 
 
However, I think there is a much easier way to think 
about this. Suppose that we want to express log଻6 in 
terms of logarithms to base 3. We can write 

log଻6 = log଻൫3logయ଺൯. 
This looks complicated, but it is really just writing the 
number 6 in a funny way, as a power of 3. Which power 
of 3 will it be? By definition, it will have to be the 
(logଷ6)th power of 3, if we want it to come out to 6. So, 
6 = 3logయ଺. With familiarity, this becomes a useful ‘trick’ 
when working with logarithms, and is something that I 
think is worth practising. Students may think of the ‘3 
to the power of’ as the inverse of ‘log to base 3’, and so 
they ‘cancel out’ when they are applied successively to 
6, in a similar way to how logଷ(3଺) is also equal to 6. But 
I prefer just to think that the power to which we need 
to raise 3 to get 6 is exactly what we define as the 

logarithm of 6 to base 3, so it’s kind of a tautology to say 
that 6 = 3logయ଺. 
 
This is the only tricky part. Once we’ve written 6 in this 
awkward way, we can just take logarithms on both 
sides and use the power rule that log௕(𝑎𝑎௡) = ݊ log௕ 𝑎𝑎 
to get 

log଻6 = logଷ6.log
଻

3, 
which is our change-of-base rule. 
 
I find this much easier to follow than the version with 
letters, even though of course it’s exactly the same. 
Indeed, you can say that the numerical version is just as 
general: the 3, 6 and 7 are just symbols. We didn’t use 
any facts about those particular numbers, such as 
3 × 2 = 6 or 6 + 1 = 7, so what we’ve done must work 
for ‘all values of 3, 6 and 7’! We could forget that 3, 6 and 
7 are numerals at all, or we could perhaps write them 
in a squiggly way (3, 6, 7) and say that they aren’t 
actually numbers, but just ‘symbols’ that happen to look 
a bit like numerals. And, if we wish, we can of course do 
the same thing more formally with 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐. 
 
We wish to replace the question mark below with a 
power of 𝑐𝑐: 

log௕ 𝑎𝑎 = log௕? 
So, we write 𝑎𝑎 in an awkward way, as 𝑐𝑐(୪୭୥೎ ௔): 

log௕ 𝑎𝑎 = log௕൫𝑐𝑐(୪୭୥೎ ௔)൯. 
Then, it’s just one step to obtain: 

log௕ 𝑎𝑎 = log௖ 𝑎𝑎 . log௕ 𝑐𝑐. 
I certainly prefer this proof to the one above that 
unnecessarily introduces ݔ and ݕ and gives me too 
many letters to easily keep track of. 
 
Quotients 
 
Does this help me see why the two quotients with which 
we began are equal? In general, a ratio of logarithms to 
the same base doesn’t depend on the base. We can see 
this if we begin with  

log௕ 𝑎𝑎 = log௖ 𝑎𝑎 . log௕ 𝑐𝑐 
and divide both sides by log௕ 𝑐𝑐, to obtain 

log௕ 𝑎𝑎
log௕ 𝑐𝑐

= log௖ 𝑎𝑎, 

in which both logarithms on the left-hand side have the 
same base. Here, the 𝑏𝑏 is arbitrary, since it doesn’t 
appear on the right-hand side, so 

log௕భ 𝑎𝑎
log௕భ 𝑐𝑐

=
log௕మ 𝑎𝑎
log௕మ 𝑐𝑐

=
log௕య 𝑎𝑎
log௕య 𝑐𝑐

= ڮ = log௖ 𝑎𝑎. 
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This means that both 
log଻6
log଻5  and 

logଷ6
logଷ5 

are equal to logହ6, and so must be equal to each other. 
Perhaps it’s better to remember the change of base rule 
in quotient rather than product form, in words (Foster, 
2022), as ‘ratios of logarithms to the same base are 
independent of the base’? Incidentally, I find that 
students rarely connect the word ‘base’ in logarithms 
with the same word in the context of writing numbers 
in different bases. The logarithm of 1000 to base 10 is 3 
because the 1 comes in the 10ଷ column. So, the number 
that is written as 1000 in base 7, say, will also have a 
logarithm to base 7 of 3, because the 1 comes in the 7ଷ 
column when 7ଷ = 343 is written in base 7. 
 
Differentiating powers 
 
The ‘trick’ of using logarithms to express any number as 
a power of any other number is often convenient. For 
example, if you want to differentiate ݕ = 𝑎𝑎௫ , then you 
can take logarithms of both sides and differentiate 
implicitly: 

ݕ = 𝑎𝑎௫ 
            lnݕ = ln(𝑎𝑎௫) 
            lnݕ = ݔ ln𝑎𝑎 

          
1
ݕ
ݕ݀
ݔ݀

= ln𝑎𝑎 

             
ݕ݀
ݔ݀

= ݕ ln𝑎𝑎 = 𝑎𝑎௫ ln𝑎𝑎. 
 
But this seems like quite a lot of steps, and substituting 
back in for ݕ at the end feels as though I lost contact 
with what I was doing. It also requires implicit 
differentiation, which students might not yet know. 

Compare that with saying that ݕ = 𝑎𝑎௫  is just an 
exponential function expressed in terms of the ‘wrong’ 
base. If only it were base ݁, we could differentiate it 
easily. So, let’s make it base ݁, by writing ݕ = ݁?. Since, 
by definition of what ln means, 𝑎𝑎 = ݁୪୬௔ , we have 

ݕ = 𝑎𝑎௫ = ൫݁୪୬ ௔൯௫ = ݁௫ ୪୬ ௔. 
Differentiating this is no harder than differentiating 
something like ݕ = ݁ଷ௫ , since ln𝑎𝑎 is just a number, like 
3. The ln part of ln 𝑎𝑎 makes it look like ‘a function’, but 
since 𝑎𝑎 is a constant, ln𝑎𝑎 is just as much a constant as 
ξ𝑎𝑎 or 𝑎𝑎ଷ. So,  

ݕ݀
ݔ݀

= (ln𝑎𝑎)݁௫ ୪୬ ௔ = (ln𝑎𝑎)𝑎𝑎௫ . 

Not only is this, I think, much quicker and easier, but it 
is helpful for seeing that 𝑎𝑎௫  is just a scaling of ݁௫. When 
𝑎𝑎 = ݁, the factor of ln𝑎𝑎 reduces to 1, revealing ݁௫ as the 
special exponential function that is exactly its own 
derivative. All of the other exponential functions have 
derivatives that are multiples of themselves, but for ݁௫ 
the multiplier is 1. To me, this is memorable and gives 
more insight into what is going on. 
 
Note 
 
I am not sure why we call these ‘rules’ or ‘laws’, whereas 
in trigonometry we call things like sin2 ݔ + cos2 ݔ ؠ 1 
‘identities’. I would rather say ‘the logarithmic 
identities’, but I don’t, because no one else seems to. 
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The radius of the quadrant is 2. 
Let the radius of the semicircle be r. Then the base is 
divided into line segments of length r and 4 − 𝑟𝑟. If a line 
joins the centres of the quadrant and semicircle, it has 
length 𝑟𝑟 + 2 and this is also the hypotenuse of a right-
angled triangle. 
By Pythagoras’ Theorem, (𝑟𝑟 + 2)2 = (4 − 𝑟𝑟)2 + 22.  
This leads directly, to 𝑟𝑟

=
4
3 , the radius of the semicircle. 

Note that the triangle is (3, 4, 5). 
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