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Playing with asymptotes 
 

Colin Foster 
 

I always enjoy teaching curve sketching because of the 
piece-by-piece detective work involved in putting 
various bits of information together until there remains 
only one possibility for what the curve must be like. I 
particularly enjoy thinking about asymptotes, because 
there are many counterintuitive and surprising 
features to explore with students. 
 
When sketching rational functions of the form 

ݕ =
(ݔ)݂
 , (ݔ)݃

where both ݂(ݔ) and ݃(ݔ) are polynomials, students 
learn to find vertical asymptotes by setting the 
denominator ݃(ݔ) to zero and solving the resulting 
equation. For example, to find the vertical asymptotes 
of 

ݕ =
ݔ − 2
2ݔ − 1 , 

the student would write 2ݔ − 1 = 0 and solve this to 
find ݔ = −1 and ݔ = 1 as the two vertical asymptotes 
(Figure 1). When doing this, students are sometimes so 
focused on the denominator that they fail to notice if the 
function they are presented with is not in its simplest 
form. For example, if asked to find the vertical 
asymptotes of 

ݕ =
ݔ − 1
2ݔ − 1 , 

they might draw the same conclusion (the vertical 
asymptotes are ݔ = −1 and ݔ = 1) and be surprised 
when sketching the curve to discover that the ݔ = 1 
asymptote does not seem to exist (Figure 2). This 
happens because 

ݔ − 1
2ݔ − 1 =

ݔ − 1
ݔ) − ݔ)(1 + 1) =

1
ݔ + 1 , 

so there is no ݔ = 1 asymptote. Technically, although  
ݔ − 1
2ݔ − 1 =

1
ݔ + 1 , 

the curve 

ݕ =
ݔ − 1
2ݔ − 1 

has the point (1, 0) missing, since ݔ = 1 is not in its 
domain, whereas 

ݕ =
1

ݔ + 1 

has no such hole. It is interesting to explore the family 
of curves 

ݕ =
ݔ − 𝑎𝑎
2ݔ − 1 , 

where 𝑎𝑎 has values such as 0.9 or 0.99, close to 1. 

 
Figure 1. The graph of ݕ =

ݔ − 2
2ݔ − 1. 

 

 
Figure 2. The graph of ݕ =

1
ݔ + 1. 

 
Students are also often surprised, when asked to sketch 
the graph of the similar-looking equation 

ݕ =
ݔ − 2
2ݔ + 1 

with just a single sign swap in the denominator, that the 
curve looks completely different (Figure 3, next page). 
To find vertical asymptotes, they write 2ݔ + 1 = 0, and 
they are supposed to conclude that there are no real 
solutions to this equation, and therefore no vertical 
asymptotes. However, one student at this point wrote 
“No real vertical asymptotes”, suggesting that perhaps 
there could be ‘complex’ ones. If students are 
simultaneously just beginning to learn about complex 
numbers, they may even conclude that there are 
asymptotes at ݔ = ±݅. One student interpreted that in 
relation to the Argand diagram by concluding that this 
meant that there were horizontal asymptotes at ݕ =
±1. It is understandable that students think that now 
that they know about complex numbers they need no 
longer be thwarted when faced with an equation like 
2ݔ + 1 = 0 and ought to be able to solve it. 
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Figure 3. The graph of ݕ =

ݔ − 2
2ݔ + 1. 

 

Horizontal asymptotes 
 
If vertical asymptotes come from setting the 
denominator equal to zero, students may feel that, ‘by 
symmetry’, horizontal asymptotes must come from 
setting the numerator to zero. Mathematics is supposed 
to be all about patterns. But there are wrong patterns 
as well as right ones (Foster, 2020)! Setting the 
numerator to zero finds us the zeroes of the function, 
not the asymptotes. 
 
It is usual to introduce horizontal asymptotes by saying 
that they are all about what happens when the 
magnitude of ݔ gets very large, both positively and 
negatively. It is nice to see this by zooming out on the ݔ-
axis using graphing software, leaving the ݕ-axis 
unchanged. Any little wiggles or intersections near the 
 become (ݔ i.e. for small-magnitude values of) axis-ݕ
hard to see, and a function like 

ݕ =
ݔ − 2
2ݔ − 1 

ends up looking like the more familiar ݕ =  for large ݔ/1
.(Figure 4) |ݔ|

 
(a) 

 

(b) 

 
 

 

Figure 4. The graph of (a) ݕ =
ݔ − 2
2ݔ − 1  approaches (b) ݕ =

1
ݔ

 for large |ݔ|. 
 
Having seen this graphically first, we can then see it 
algebraically. Informally, we might say that subtracting 
1 or 2 from 2ݔ or ݔ is going to make next to no 
difference, once |ݔ| becomes very large. (A million 
minus 2, divided by a trillion minus 1, is essentially a 
million divided by a trillion, which is essentially zero).  
 

So,              ݕ =
ݔ − 2
2ݔ − 1 ՜

ݔ
2ݔ

=
1
ݔ

 . 

Therefore, since ݕ =  axis as a horizontal-ݔ has the ݔ/1
asymptote, so will 

ݕ  =
ݔ − 2
2ݔ − 1 . 

 
More formally, we can divide both the numerator and 
the denominator by 2ݔ: 

ݕ =
ݔ − 2
2ݔ − 1 =

1
ݔ −

2
2ݔ

1 − 1
2ݔ

՜
0 − 0
1 − 0 = 0, 

giving a horizontal asymptote of ݕ = 0. 
 
It is useful to ask students how they would modify the 
function 

ݕ =
ݔ − 2
2ݔ − 1 

to obtain a horizontal asymptote that is some other 
horizontal line, that isn’t the ݔ-axis. So often, horizontal 
asymptotes are the ݔ-axis (e.g. exponential functions) 
that students may assume that this is the only 
possibility. For example, suppose that they wanted this 
process to lead to ݕ = 3 as the horizontal asymptote. 
Working backwards, we will need something like 
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1
ݔ −

2
2ݔ + 3

1 − 1
2ݔ

, 

which would come from 

ݕ =
2ݔ3 + ݔ − 2
2ݔ − 1  . 

This simplifies to 

ݕ =
ݔ3) − ݔ)(2 + 1)
ݔ) − ݔ)(1 + 1) =

ݔ3 − 2
ݔ − 1  (Figure 5). 

We can see that the graph of this function has a 
horizontal asymptote at ݕ = 3, by writing 

ݔ3 − 2
ݔ − 1 ՜

ݔ3
ݔ

= 3, 

or by dividing the numerator and denominator of 
ݔ3 − 2
ݔ − 1  

by ݔ, as above. We can also see it by ‘dividing out’ the 
denominator from the numerator: 

ݔ3 − 2
ݔ − 1 =

ݔ)3 − 1) + 1
ݔ − 1 = 3 +

1
ݔ − 1 . 

Students often find this a tricky procedure, but it is 
exactly analogous to converting an improper fraction to 
a mixed number: 

22
7 =

3 × 7
7 +

1
7 = 3

1
7 . 

This corresponds to substituting ݔ = 8 into the 
expression above. And the expression  

3 +
1

ݔ − 1 

clearly tends to 3 as |ݔ| goes to infinity. 
 

 
Figure 5. The graph of ݕ =

ݔ3 − 2
ݔ − 1  . 

 
A final way to discover this horizontal asymptote is to 
rearrange the equation. Unlike the original function 
that contained an 2ݔ, we can make ݔ the subject of 

ݕ =
ݔ3 − 2
ݔ − 1  . 

Multiplying up, we have 
ݕݔ                                − ݕ = ݔ3 − 2 
ݕ)ݔ                            − 3) = ݕ − 2, 
giving 
ݔ                                          =

ݕ − 2
ݕ − 3 . 

Although this feels like finding the inverse function, it is 
not quite the same, because here it is not necessary for 
 .in order to write this relation ݕ to be a function of ݔ
 
Now we can see from the denominator that ݕ = 3 
corresponds to |ݔ| ՜ λ, just as before. I think it is really 
helpful for students to encounter all of these equivalent 
ways of seeing the same thing. 
 
Relating horizontal asymptotes to vertical 
asymptotes 
 
Students may feel that these arguments about what 
happens when |ݔ| ՜ λ for horizontal asymptotes seem 
entirely different from checking when the denominator 
is zero for vertical asymptotes. But, actually, they are 
very closely related. Looking for a zero denominator for 
an expression equal to ݕ is exactly equivalent to 
checking for values of ݔ for which |ݕ| ՜ λ. It is not 
quite symmetrical, however, as we have seen, since ݕ 
must be a single-valued function of ݔ, but ݔ doesn’t have 
to be a single-valued function of ݕ. 
 
Because of this, a function can have as many vertical 
asymptotes as it likes; the function ݕ = tan  for ,ݔ
example, has infinitely many. But the number of 
possible horizontal asymptotes is restricted by the fact 
that each ݔ value must map onto a single ݕ value. Since 
there are only two possible infinite ݔ limits (+λ and 
−λ), there is a maximum of two possible ݕ values that 
could be associated with them. This means that a 
function can have zero, one or two horizontal 
asymptotes, but no more than that. 
 
For example, ݕ = ݔ3 − 1 (or any polynomial of degree 
1 or more) has no horizontal asymptotes, a function like 

ݕ =
3

ݔ − 1 

has one horizontal asymptote (at ݕ = 0), and to find a 
function with two horizontal asymptotes we need the 
function to behave differently for large positive ݔ and 
large negative ݔ. Students could be invited to try to 
come up with an example of a function with two 
horizontal asymptotes. One way to do this is to ‘cheat’ 
by using a piecewise function. For example, we could 
use the right-hand portion of 

ݕ =
ݔ3 − 2
ݔ − 1  , 

which, as we have seen, has a horizontal asymptote at 
ݕ = 3, and the left-hand portion of 

ݕ =
3

ݔ − 1 , 

which has a horizontal asymptote at ݕ = 0 (Figure 6). 
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Figure 6. The graph of ݕ =

ە
ۖ
۔

ۖ
  ۓ

3
ݔ − 1        if ݔ < 1

 
ݔ3 − 2
ݔ − 1       if ݔ > 1

 

 
A single rational function (i.e. one with numerator and 
denominator both polynomials) never has more than 
one horizontal asymptote, but other functions do. For 
example, sigmoid functions, such as ݕ = tanି1  do, as ,ݔ
does 
ݕ =

ݔ
ξ1 + 2ݔ

 or ݕ =
ݔ

1 + |ݔ|   (Figure 7, to the right). 

A step function could also be a (perhaps trivial) 
example. 
 
Another difference between vertical and horizontal 
asymptotes is that a smooth curve can’t cross a vertical 
asymptote, since its value becomes arbitrarily large as 
it gets close to the ݔ value of the asymptote. But there is 
no prohibition against a curve crossing a horizontal 
asymptote, and indeed it may do so as often as it wishes 
– even infinitely often; for example, 

ݕ =
sin ݔ
ݔ

 . 
Horizontal asymptotes are about what a curve does far 
out to the left and right, for large |ݔ|. What the curve 
does nearer to the ݕ-axis is of no relevance to this. This 
can be a problem for students if their informal 
definition of an asymptote is ‘a line that the curve gets 
closer to but never touches’. Figures 1 and 3 show 
curves crossing the horizontal asymptote ݕ = 0 before 
eventually getting arbitrarily close to it, as |ݔ| increases.  
 
Oblique asymptotes 
 
It can be a surprise to students that vertical asymptotes 
and horizontal asymptotes are not the only two 
possibilities. There is no reason why asymptotes must 
be parallel to the coordinate axes. In a rational function, 
if the degree of the numerator is 1 more than that of the 
denominator, then we get oblique (or slant) 
asymptotes. 
 

(a) 

 

(b) 

 

(c) 

 

Figure 7. The sigmoid graphs of  (a)ݕ = tanି1  ,ݔ
              (b) ݕ =

ݔ
ξ1 + 2ݔ

 and (c) ݕ =
ݔ

1 +  . |ݔ|
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Suppose we want to find a function with an oblique 
asymptote of ݕ = ݔ + 2. This means that the function 
must approach ݔ + 2 as |ݔ| increases, so it must be of 
the form 

ݕ  = ݔ + 2 + (parts that  ՜ 0 as ݔ ՜ f).  
We can easily make such a function; for example, 

ݕ = ݔ + 2 +
1

ݔ − 1 . 
Now, to disguise it a little, we can put this over a 
common denominator: 

ݕ = ݔ + 2 +
1

ݔ − 1 

      =
ݔ) + ݔ)(2 − 1) + 1

ݔ − 1  

      =
2ݔ + ݔ − 1
ݔ − 1  . 

If we plot this, and zoom out, we can clearly see that it 
looks just like ݕ = ݔ + 2 for large |ݔ| (Figure 8). The 
curve doesn’t level off horizontally, like curves with 
horizontal asymptotes do; it gets arbitrarily close to a 
diagonal line with gradient 1 and intercept 2. 

 
Figure 8. The graph of ݕ =

2ݔ + ݔ − 1
ݔ − 1  (blue) when 

zoomed out looks like the graph of ݕ = ݔ + 2 (red). 
 
But how could we discover that the oblique asymptote 
would be ݕ = ݔ + 2 if we hadn’t deliberately 
constructed it that way ourselves? We would just have 
to divide out 

ݕ =
2ݔ + ݔ − 1
ݔ − 1  

and write it in a more transparent form. 
 
We can write: 

2ݔ + ݔ − 1 = ݔ) − 1)(… … … ), 
where the dots inside the brackets indicate as-yet-
undetermined terms. Since we want a quadratic 
answer, this second bracket must also be linear, so 
there will be just two terms, a term in ݔ and a constant. 

The first part of the empty bracket must be ݔ, in order 
to multiply the other ݔ to make the required 2ݔ: 

2ݔ + ݔ − 1 = ݔ) − ݔ)(1 … … ). 
The byproduct of placing this ݔ there is that it can’t help 
being forced to multiply the −1 as well, to produce −ݔ, 
whereas we actually want +ݔ. We can fix that by putting 
+2 as the second term in the bracket: 

2ݔ + ݔ − 1 = ݔ) − ݔ)(1 + 2) … 
Now, we have created 2ݔ + ݔ − 2, whereas we wanted 
2ݔ + ݔ − 1. The first two terms are correct, but the 
constant is wrong, so we need to add 1 to correct it, 
giving: 

2ݔ + ݔ − 1 = ݔ) − ݔ)(1 + 2) + 1. 
This process of division ‘by inspection’ is reminiscent of 
the process of completing the square. 
Our division tells us that  

ݕ =
2ݔ + ݔ − 1
ݔ − 1  

    =
ݔ) − ݔ)(1 + 2) + 1

ݔ − 1  

    = ݔ) + 2) +
1

ݔ − 1, 
as we had originally. Doing the division and discarding 
the fractional part, which always goes to zero as |ݔ| goes 
to infinity, will always give us the oblique asymptote. 
 
It is worth students being aware that there are wrong 
approaches to finding oblique asymptotes. Someone 
might plausibly say that for large |ݔ|, we can ignore the 
–1s in 

     
2ݔ + ݔ − 1
ݔ − 1  

to obtain  
2ݔ + ݔ
ݔ

 =
ݔ + 1

1  , 
and conclude (wrongly) that the oblique asymptote is 
ݕ = ݔ + 1, rather than the correct line, ݕ = ݔ + 2. We 
can clearly see from Figure 8 that ݕ = ݔ + 1 is not 
asymptotic to this curve. 
 
We get the same wrong answer, perhaps more 
plausibly, by first dividing the numerator and 
denominator by ݔ, giving 

ݔ + 1 − 1
ݔ

1 − 1
ݔ

 

which also appears to tend to ݔ + 1 as |ݔ| tends to 
infinity. How do these seemingly innocent steps 
manage to give us the wrong oblique asymptote? 
 
The problem is that when we reason about asymptotic 
behaviour by considering large |ݔ|, we have to throw 
away everything except the most significant term in 
each expression. In 

2ݔ + ݔ − 1
ݔ − 1  , 
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this leaves us with ݔ in the denominator, but only 2ݔ in 
the numerator – we can’t also keep the ݔ. Since ݔ/2ݔ =
 we have a linear |ݔ| we can conclude that for large ,ݔ
asymptote with gradient 1; i.e., ݕ = ݔ1 + 𝑐𝑐. However, 
the large |ݔ| completely dominates the constant 𝑐𝑐, and 
so this informal reasoning about the asymptote cannot 
correctly identify the specific value of 𝑐𝑐. Similarly, in 

ݔ + 1 − 1
ݔ

1 − 1
ݔ

 , 

when we take |ݔ| to be large we must discard 
everything but the ݔ in the numerator. 
 
Just teaching students the correct way to find an 
oblique asymptote might not be sufficient, as there is 
always the risk that they ‘discover’ this wrong method. 
So, I think it is important to make them aware of it, and 
why it doesn’t work (French, & Stripp, 1997, pp. 7-8). 
 
If the numerator is more than 1 degree higher than the 
denominator, our asymptote won’t just be at an angle to 
the axes; it won’t even be a straight line! Consider a 
function like 

ݕ =
ଷݔ + ݔ3 + 1

ݔ
 . 

Dividing out the ݔ, we get ݕ = 2ݔ + 3 + 1
௫
. Clearly, as |ݔ| 

goes to infinity, ݕ will get arbitrarily close to the 
parabola ݕ = 2ݔ + 3 (Figure 9). 
 
I think that by playing around with different 
possibilities of asymptotes the topic can become less 
procedural and the connections can become more 
salient. 
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Figure 9. The graph of ݕ = ௫యାଷ௫ା1

௫
 (blue) when zoomed out 

looks like the graph of ݕ = 2ݔ + 3 (red). 
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