Playing with asymptotes

Colin Foster

I always enjoy teaching curve sketching because of the
piece-by-piece detective work involved in putting
various bits of information together until there remains
only one possibility for what the curve must be like. I
particularly enjoy thinking about asymptotes, because
there are many counterintuitive and surprising
features to explore with students.

When sketching rational functions of the form

_f@

9’
where both f(x) and g(x) are polynomials, students
learn to find vertical asymptotes by setting the
denominator g(x) to zero and solving the resulting

equation. For example, to find the vertical asymptotes
of

x—2
T
the student would write x> — 1 = 0 and solve this to
find x = —1 and x = 1 as the two vertical asymptotes

(Figure 1). When doing this, students are sometimes so
focused on the denominator that they fail to notice if the
function they are presented with is not in its simplest
form. For example, if asked to find the wvertical
asymptotes of
x—1
Yy

they might draw the same conclusion (the vertical
asymptotes are x = —1 and x = 1) and be surprised
when sketching the curve to discover that the x =1
asymptote does not seem to exist (Figure 2). This
happens because

x—1 x—1 1
x2—1 (x-Dx+1) x+1°

so there is no x = 1 asymptote. Technically, although

x—1 1
X2—1 x+1
the curve
x—1
YT o1

has the point (1, 0) missing, since x = 1 is not in its
domain, whereas

1
x+1

has no such hole. It is interesting to explore the family
of curves

y:

_x-—a
y_xz—l'

where a has values such as 0.9 or 0.99, close to 1.
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Figure 1. The graph of y = —- >
igure 1. The graph of y = —5—.
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Figure 2. The graph of y = Py

Students are also often surprised, when asked to sketch
the graph of the similar-looking equation

x—2
T xz+1
with just a single sign swap in the denominator, that the
curve looks completely different (Figure 3, next page).
To find vertical asymptotes, they write x> + 1 = 0, and
they are supposed to conclude that there are no real
solutions to this equation, and therefore no vertical
asymptotes. However, one student at this point wrote
“No real vertical asymptotes”, suggesting that perhaps
there could be ‘complex’ ones. If students are
simultaneously just beginning to learn about complex
numbers, they may even conclude that there are
asymptotes at x = +i. One student interpreted that in
relation to the Argand diagram by concluding that this
meant that there were horizontal asymptotes at y =
+1. It is understandable that students think that now
that they know about complex numbers they need no
longer be thwarted when faced with an equation like
x% + 1 = 0 and ought to be able to solve it.
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Figure 3. The graph of y = 21
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Figure 4. The graph of (a) y = ;2
Having seen this graphically first, we can then see it
algebraically. Informally, we might say that subtracting
1 or 2 from x? or x is going to make next to no
difference, once |x| becomes very large. (A million
minus 2, divided by a trillion minus 1, is essentially a
million divided by a trillion, which is essentially zero).

x—2 x 1

x?—-1 -

Therefore, since y = 1/x has the x-axis as a horizontal
asymptote, so will

So,

y= - ===
x2 x

x—2

Y= 1

More formally, we can divide both the numerator and
the denominator by x?:

(b)

1
—3 approaches (b) y = p for large |x|.
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Horizontal asymptotes

If vertical asymptotes come from setting the
denominator equal to zero, students may feel that, ‘by
symmetry’, horizontal asymptotes must come from
setting the numerator to zero. Mathematics is supposed
to be all about patterns. But there are wrong patterns
as well as right ones (Foster, 2020)! Setting the
numerator to zero finds us the zeroes of the function,
not the asymptotes.

It is usual to introduce horizontal asymptotes by saying
that they are all about what happens when the
magnitude of x gets very large, both positively and
negatively. It is nice to see this by zooming out on the x-
axis using graphing software, leaving the y-axis
unchanged. Any little wiggles or intersections near the
y-axis (i.e. for small-magnitude values of x) become
hard to see, and a function like

x—2

x?2 -1

ends up looking like the more familiar y = 1/x for large
[x| (Figure 4).
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giving a horizontal asymptote of y = 0.

It is useful to ask students how they would modify the
function

x—2

x?2—-1

to obtain a horizontal asymptote that is some other
horizontal line, that isn’t the x-axis. So often, horizontal
asymptotes are the x-axis (e.g. exponential functions)
that students may assume that this is the only
possibility. For example, suppose that they wanted this
process to lead to y = 3 as the horizontal asymptote.
Working backwards, we will need something like

y:



which would come from
3x2+x—2
Y= T
This simplifies to
Bx—2)(x+1) 3x
T D+«
We can see that the graph of this function has a
horizontal asymptote at y = 3, by writing

-2
1 (Figure 5).

3x—2 3x
- — =3,
x—1 X
or by dividing the numerator and denominator of
3x—2
x—1

by x, as above. We can also see it by ‘dividing out’ the
denominator from the numerator:

3x-2 3x-1)+1 1
x—1 -
Students often find this a tricky procedure, but it is

exactly analogous to converting an improper fraction to
a mixed number:

22 3x7 N 1 3 1
77 7 7
This corresponds to substituting x =8 into the

expression above. And the expression

x—1 x—1

3+

x—1
clearly tends to 3 as |x| goes to infinity.
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Figure 5. The graph of y = ~—1°

A final way to discover this horizontal asymptote is to
rearrange the equation. Unlike the original function
that contained an x?, we can make x the subject of

3x—2
x—1"

y:
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Multiplying up, we have
xy—y=3x-—2
x(y=3)=y-2,
giving
_y—2
X = y=3’
Although this feels like finding the inverse function, it is
not quite the same, because here it is not necessary for
x to be a function of y in order to write this relation.

Now we can see from the denominator that y =3
corresponds to |x| — oo, just as before. I think it is really
helpful for students to encounter all of these equivalent
ways of seeing the same thing.

Relating horizontal asymptotes to vertical
asymptotes

Students may feel that these arguments about what
happens when |x| — oo for horizontal asymptotes seem
entirely different from checking when the denominator
is zero for vertical asymptotes. But, actually, they are
very closely related. Looking for a zero denominator for
an expression equal to y is exactly equivalent to
checking for values of x for which |y| - co. It is not
quite symmetrical, however, as we have seen, since y
must be a single-valued function of x, but x doesn’t have
to be a single-valued function of y.

Because of this, a function can have as many vertical
asymptotes as it likes; the function y =tanx, for
example, has infinitely many. But the number of
possible horizontal asymptotes is restricted by the fact
that each x value must map onto a single y value. Since
there are only two possible infinite x limits (4+c and
—00), there is a maximum of two possible y values that
could be associated with them. This means that a
function can have zero, one or two horizontal
asymptotes, but no more than that.

For example, y = 3x — 1 (or any polynomial of degree
1 or more) has no horizontal asymptotes, a function like

3
x—1

y:

has one horizontal asymptote (at y = 0), and to find a
function with two horizontal asymptotes we need the
function to behave differently for large positive x and
large negative x. Students could be invited to try to
come up with an example of a function with two
horizontal asymptotes. One way to do this is to ‘cheat’
by using a piecewise function. For example, we could
use the right-hand portion of

3x—2
x—1"
which, as we have seen, has a horizontal asymptote at

y = 3, and the left-hand portion of
3

x—1
which has a horizontal asymptote at y = 0 (Figure 6).

y:

y:
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Figure 6. The graph of y =
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A single rational function (i.e. one with numerator and
denominator both polynomials) never has more than
one horizontal asymptote, but other functions do. For
example, sigmoid functions, such as y = tan~! x, do, as
does
-_* - Figure 7, to the right)

ST Y T T e |
A step function could also be a (perhaps trivial)
example.

Another difference between vertical and horizontal
asymptotes is that a smooth curve can’t cross a vertical
asymptote, since its value becomes arbitrarily large as
it gets close to the x value of the asymptote. But there is
no prohibition against a curve crossing a horizontal
asymptote, and indeed it may do so as often as it wishes
- even infinitely often; for example,

sin x
y = .
X

Horizontal asymptotes are about what a curve does far
out to the left and right, for large |x|. What the curve
does nearer to the y-axis is of no relevance to this. This
can be a problem for students if their informal
definition of an asymptote is ‘a line that the curve gets
closer to but never touches’. Figures 1 and 3 show
curves crossing the horizontal asymptote y = 0 before
eventually getting arbitrarily close to it, as | x| increases.

Oblique asymptotes

It can be a surprise to students that vertical asymptotes
and horizontal asymptotes are not the only two
possibilities. There is no reason why asymptotes must
be parallel to the coordinate axes. In a rational function,
if the degree of the numerator is 1 more than that of the
denominator, then we get oblique (or slant)
asymptotes.
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Suppose we want to find a function with an oblique
asymptote of y = x + 2. This means that the function
must approach x + 2 as |x| increases, so it must be of
the form

y = x + 2 + (parts that — 0 as x = «).

We can easily make such a function; for example,

1
=x+2+——.
Y x—1
Now, to disguise it a little, we can put this over a
common denominator:

1
y=x+2+——

x—1
_(x+2)(x—1)+1
h x—1

x2+x—-1
- x—1

If we plot this, and zoom out, we can clearly see that it
looks just like y = x + 2 for large |x| (Figure 8). The
curve doesn’t level off horizontally, like curves with
horizontal asymptotes do; it gets arbitrarily close to a
diagonal line with gradient 1 and intercept 2.
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zoomed out looks like the graph of y = x + 2 (red).

Figure 8. The graph of y =

But how could we discover that the oblique asymptote
would be y=x+2 if we hadn’'t deliberately
constructed it that way ourselves? We would just have
to divide out
x2+x—1

x—1
and write it in a more transparent form.

y:

We can write:

where the dots inside the brackets indicate as-yet-
undetermined terms. Since we want a quadratic
answer, this second bracket must also be linear, so
there will be just two terms, a term in x and a constant.
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The first part of the empty bracket must be x, in order

to multiply the other x to make the required x2:
2+x—1=(x-D(....).

The byproduct of placing this x there is that it can’t help

being forced to multiply the —1 as well, to produce —x,

whereas we actually want +x. We can fix that by putting

+2 as the second term in the bracket:
2+x—-1=(x-Dx+2)..

Now, we have created x? + x — 2, whereas we wanted
x% 4+ x — 1. The first two terms are correct, but the
constant is wrong, so we need to add 1 to correct it,
giving:
x2+x—-1=Cx—-1D(x+2)+1.

This process of division ‘by inspection’ is reminiscent of
the process of completing the square.
Our division tells us that

x> +x—-1
Tox—1

x-Dkx+2)+1
- x—1

y

1
= 2) + ——,
(x + )+x—1

as we had originally. Doing the division and discarding
the fractional part, which always goes to zero as |x| goes
to infinity, will always give us the oblique asymptote.

It is worth students being aware that there are wrong
approaches to finding oblique asymptotes. Someone
might plausibly say that for large |x|, we can ignore the
-1sin
x*+x—1
x—1

to obtain

x*+x x+1

x 1’

and conclude (wrongly) that the oblique asymptote is
y = x + 1, rather than the correct line, y = x + 2. We
can clearly see from Figure 8 that y =x+ 1 is not
asymptotic to this curve.

We get the same wrong answer, perhaps more

plausibly, by first dividing the numerator and
denominator by x, giving
1
x+1-— X
1
X

which also appears to tend to x + 1 as [x| tends to
infinity. How do these seemingly innocent steps
manage to give us the wrong oblique asymptote?

The problem is that when we reason about asymptotic
behaviour by considering large |x|, we have to throw
away everything except the most significant term in
each expression. In
x2+x—-1
x—1

)



this leaves us with x in the denominator, but only x2%in
the numerator - we can’t also keep the x. Since x?/x =
x, we can conclude that for large |x| we have a linear
asymptote with gradient 1; i.e, y = 1x + c. However,
the large |x| completely dominates the constant c, and
so this informal reasoning about the asymptote cannot
correctly identify the specific value of c. Similarly, in

1
x+1 —'%

1-1
X

when we take |x| to be large we must discard
everything but the x in the numerator.

Just teaching students the correct way to find an
oblique asymptote might not be sufficient, as there is
always the risk that they ‘discover’ this wrong method.
So, I think it is important to make them aware of it, and
why it doesn’t work (French, & Stripp, 1997, pp. 7-8).

If the numerator is more than 1 degree higher than the
denominator, our asymptote won’t just be at an angle to
the axes; it won’t even be a straight line! Consider a
function like

x*+3x+1

yE——

Dividing out the x, we gety = x% + 3 + % Clearly, as |x|
goes to infinity, y will get arbitrarily close to the
parabola y = x% + 3 (Figure 9).

[ think that by playing around with different
possibilities of asymptotes the topic can become less
procedural and the connections can become more
salient.
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Two Domino Problems
The dominoes to the right are both 2 by 4.

Drawn inside the upper domino is a quadrant and a

semicircle,

while the lower domino contains two semicircles.

Find the radii of the four inscribed shapes.

Solutions are given on pages 69 and 76.

-5 -4

x343x+1
x

Figure 9. The graph of y = (blue) when zoomed out

looks like the graph of y = x2 + 3 (red).
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