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Some famous, perfectly valid proofs may 
nevertheless seem quite unconvincing at their first 
viewing. I am not just talking about the result being 
surprising, but the method of proof having a kind of 
dubious air about it. As our example, let’s take the 
divergence of the harmonic series,

Theorem: The harmonic series diverges.

There is no doubt that this is a surprising result. 
As Havil commented (2003, p. 22), “No property 
is more unexpected than Hn’s divergence”. We have 
to battle against the familiarity of the result and its 
proofs (our ‘curse of knowledge’) if we’re to see how 
shocking this might (should) be to a student meeting 
it for the first time. It seems natural to assume that 
a series must converge if the terms get ‘smaller and 
smaller’. Experience with geometric series, such as

and the associated pictures, such as a unit square, in 
which we successively colour half and then half of 
what’s left, and so on, lead us to expect that so long 
as the terms decrease in size, the sum is bound to 
get ‘closer and closer’ to some value which it cannot 
ever exceed.

But ‘closer and closer’ is not what convergence is 
about (Foster, 2018): to converge, the sum needs 
to get arbitrarily close to a fixed number (i.e., closer 
than any real number you can think of, however 
small), and stay there – and the harmonic series 
never does that. The harmonic series diverges to 
infinity, meaning that you can choose any number, as 
large as you like, and eventually the sum will exceed 
that number – although you might need to take a 
very large number of terms to get past it.

So, it’s undoubtedly a surprising result. But what 
I’m thinking about here is the perhaps unconvincing 
nature of some proofs of this, when seen from a 
student’s perspective. A great many proofs that 
the harmonic series diverges have been given (see 
Kifowit & Stamps, 2006; Kifowit, 2019), but the 
most common one is undoubtedly that due to Nicole 
Oresme (1323–1382). And I think that thoughtful 
students don’t always find this proof particularly 
convincing.

Oresme’s proof involves putting the terms of the 
harmonic series into larger and larger groups, and 

noting that each group has a sum that is greater  
than 

Looking at the first bracket, since  it follows

that  Similarly, in the second

bracket,  are each separately greater than

 so it follows that

We can continue grouping terms like this, so that the 
nth bracket will contain 2n fractions, each of which 
is greater than or equal to  so the total for the
nth bracket will necessarily be greater than  This 
means that

and we know that the right-hand side is unbounded, 
so the sum of the harmonic series is greater than any 
real number.

There is nothing wrong with this proof, and I am not 
suggesting that there is. However, to many students 
it can feel rather dodgy, because of the fact that we 
are including more and more terms in each group. 
Granted, there are infinitely many terms available, so 
we will certainly never run out of terms. But, it may 
still feel a little dubious to be having to take bigger 
and bigger bites out of the series in order to find our 

 Is this really legitimate? Couldn’t you play this 
trick on series that actually do converge, and use 
this method to prove that they don’t? Unless you try 
(and, we hope, fail!) to do this, I think it’s hard to 
claim that you really understand Oresme’s proof. So 
let’s do this now.

Reassuringly, Oresme’s approach definitely doesn’t 
work for the convergent geometric series:

This is an easy case, because every term in this series 
is larger than the sum of all the subsequent terms. 
For example,
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So, even if you include all the terms after the first 
term,  you can never make another bracket that is 
as big as  so you can never get to

because you can never even get to  This corresponds
to the fact that the infinite sum is  which is less  
than  And, starting with a later term doesn’t help, as 
exactly the same thing will happen. So, we have failed 
to use Oresme’s method to prove the divergence of

 which is good!

But, what if we picked some smaller fraction than  
say something really small like  aiming to 
eventually get to the divergent series

Is it obvious that this wouldn’t work? It’s one of 
those things that becomes obvious if you think 
about it for long enough! The process seems to 
start off successfully (for our attempt to prove 
divergence), because  and so on. 
But, eventually (in this case, for all n > 10), we can 
see that  So, to continue to make brackets 
containing terms that sum to more than  we 
would need to add up

until this sum exceeds  And we can see that that 
will never happen, since we have already noted that 
every term in this series is larger than the sum of all 
the subsequent terms. So, this approach is doomed 
to fail, and choosing a larger n in  won’t help. 
This means that, however small a fixed number we 
choose for the total of our brackets, eventually, far 
enough out, the terms of the series will drop below 
this value, and then the sum of all the remaining 
terms can never match it, and so we are doomed. 
Doomed is good, of course, since we don’t really 

want to prove that convergent series like  
diverge!

However, it is certainly not the case for all convergent 
series, even for all convergent geometric series, 
that each term has to be larger than the sum of all 
the subsequent terms. In this respect, the series 

was an easy case. In general,

So, each term will be larger than the sum of all the 
subsequent terms iff

Now, since 1 – r > 0, and assuming that a > 0, we can 
rearrange to give 1 – r > r; so   So, it worked 

out this way for  because r was equal to  

which is less than  The boundary case, when r   
is the equality 

and, for all of the geometric series for which

even though they converge, the total of all the 
subsequent terms is more than the term that came 
before them, so it’s less obvious that Oresme’s 
approach must fail with them.

Let’s take, for example,

and we note that

So, we can see, even just from among geometric 
series, that each term being larger than the sum of all 
the remaining ones cannot be a necessary condition 
for convergence. So, let’s try Oresme’s method on 
something like  Can we prove that this 
convergent series diverges? Hopefully not!

We write:

The task is to see if we can collect these terms into 
larger and larger groups such that each group 
exceeds  To begin with, we have no difficulty. By 
inspection, we can see that

So, we move on to  How many subsequent terms 
do we need to add to this to exceed  Now, we have 
a problem, because even if we take all of the 
remaining terms, the sum will be

This doesn’t prove that the series converges, but it 
does mean that Oresme’s method cannot prove that 
it doesn’t.
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Would it work if we picked some smaller comparison 
number than  Let’s try  We want to group the 
terms of 

into brackets such that each is greater than  Can we
do it? We see that  for n < 6, so we don’t 
need any brackets yet for those terms, as each one
individually exceeds  Then,  so we 
have a group of two terms. And then we find that the 
terms 8 to 14 have a sum greater than , so now we 
have a group of 7 terms. But then we are stuck, 
because the infinite sum from term 15 onwards is 

Why exactly does Oresme’s method seem to always 
(eventually) fail for convergent series? This may 
be obvious depending on how you understand 
convergent series. For a series to converge, no matter 
how small a number we think of, we can always 
get closer to a fixed value than that small number, 
provided we just take enough terms. The idea of 
Cauchy convergence is that, provided you go far 
enough out, the magnitude of any sum of consecutive 
terms will be less than any arbitrary number we can 
think of, however small.

It seems to me that Oresme’s proof raises important 
issues to think about, but is nowhere close to the 
easiest way to see that the harmonic series diverges. 
I think I much prefer an alternative approach (this is 
proof #6 in Kifowit & Stamps, 2006, where they 
credit Honsberger and also Gillman, but it has also 
been rediscovered by Goldmakher (n.d.) – see also 
Havil, 2003, pp. 22–23). In this much simpler 
approach, we first group the terms in pairs 
throughout – there is no taking bigger and bigger 
bites. Then, to create an inequality, we replace the 
larger term in each pair with a copy of the smaller 
term in that pair, and observe that this recreates the 
original series:

The contradiction H > H tells us that the series 
cannot sum to any finite value H, and hence that it 
diverges. 

Although this proof relies on the supposedly difficult 
method of ‘proof by contradiction’ (but see Foster, 
2021), I think it raises far fewer problems for 
thoughtful students. But I would be very interested 
to know what other readers think.
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