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The proof of the formula

𝑆 = 𝑎 
1−𝑟

for the sum 𝑆 of a geometric sequence with first 
term 𝑎 ≠ 0 and common ratio |𝑟| < 1 is usually done 
by multiplying the sum by 𝑟 and subtracting:

𝑆 = 𝑎 +  𝑎 𝑟 + 𝑎 𝑟2 +  𝑎 𝑟3 +  ⋯
𝑟𝑆 = 𝑎 𝑟 + 𝑎 𝑟2 +  𝑎 𝑟3 +  𝑎 𝑟4 +  ⋯

𝑆 − 𝑟𝑆 = 𝑎 
𝑆 (1 − 𝑟) = 𝑎 

𝑆 = 𝑎 
1 − 𝑟.

But this proof can feel unconvincing to students in 
the subtraction step. We can match up the terms 
that cancel out, but it looks a bit as though the 𝑟𝑆 
sum has one more term than the 𝑆 sum:

Of course, we can include an 𝑎 𝑟4 term in the 𝑆 sum 
if we want to, but then students will protest that we 
are stacking the deck, because we have five terms 
of 𝑆 but only four terms of 𝑟𝑆. If we want to include 
𝑎 𝑟4 in 𝑆, then they may think that we should surely 
include 𝑎 𝑟5 in 𝑟𝑆, and then we are back to the original 
mismatching problem.

The teacher might be inclined to wave this issue 
away by saying that these series are infinite, so there 
will always be a term in 𝑆 to match any term we care 
to think of in 𝑟𝑆. If we doubt it, then we should try 
to say which term it is that it will first go wrong for, 
and we will not be able to. However, I think it may 
still feel to thoughtful students as though something 
fishy is going on within the mysterious ‘...’ parts of 
these sums, and that there is something happening 
here that they don’t fully understand. If they 
nevertheless shrug and allow the teacher to move 
on, I think something is lost in terms of their sense 
that mathematics is rigorous and meaningful. But 
what to do?

Finite sums

One response is to say that we are being a bit casual 
with our infinite series here, and we would be on 
much safer ground if we dealt with finite series 
instead, where the murkiness of the ‘...’ regions 
doesn’t arise.

So, instead we write

𝑆𝑛 = 𝑎 + 𝑎 𝑟 + 𝑎 𝑟2 +  𝑎 𝑟3 +  ⋯ +  𝑎 𝑟𝑛−2 +  𝑎 𝑟𝑛−1 
𝑟𝑆𝑛 = 𝑎 𝑟 +  𝑎 𝑟2 +  𝑎 𝑟3 +  𝑎 𝑟4 +  ⋯ +  𝑎 𝑟𝑛−1 +  𝑎 𝑟𝑛

 𝑆𝑛 − 𝑟𝑆𝑛 = 𝑎 − 𝑎 𝑟𝑛

 𝑆𝑛 (1 − 𝑟) = 𝑎 (1 − 𝑟𝑛)

 𝑆𝑛 = 𝑎 (1 − 𝑟𝑛)
1 − 𝑟  (No te1) .

Now, with a greater or lesser degree of formality, 
we can say that, iff |𝑟| < 1, then as 𝑛 gets large we 
can ‘forget about’ the 𝑟𝑛, as it will be ‘negligible’ or 
‘vanishingly small’, or some such language. We could 
make this look more formal by using → notation and 
the language of ‘null sequence’, and writing:

As 𝑛 → ∞, 𝑟𝑛 → 0, 
𝑎 (1 − 𝑟𝑛)

1 − 𝑟  → 𝑎 
1 − 𝑟, 

and then we write 𝑆∞ as just 𝑆.

We have to try to help students see that this isn’t 
an approximation, or, if it is, then it is a perfect 
approximation, because the ‘error’ can be made 
as small as we like, just by making 𝑛 large enough. 
There is no positive real number that the error can’t 
be made smaller than, simply by choosing a large 
enough 𝑛. That may still not sound ‘exact’ to the 
students’ ears, though. They are likely to say that, 
for complete accuracy, they want 𝑟𝑛 to be precisely 
equal to zero, not just to ‘tend’ in that general sort of 
direction (see Foster, 2018).

Proofs Without Words

An alternative method of proof is to use one of the 
Proofs without words (often, in practice, ‘with only 
few words’). Consider the example shown in the 
diagram (due to J. H. Webb, taken from Nelson, 
2003, p. 119):
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Moving from left to right, each successive right-
angled triangle has both its base and its height 
multiplied by 𝑟. So, all of the right-angled triangles 
are similar. Equating the ratios of the base to height 
of the largest one and the blue one, we obtain:

𝑆

(1
𝑟)

 = 𝑎 𝑟
1 − 𝑟, 

so,

𝑆 = 𝑎 
1 − 𝑟.

Proofs without words can be quick and convincing, 
but can often feel like a rabbit pulled out of a hat. 
Where they relate to limits, they often suffer from 
the problem that the really interesting bit, that you 
are potentially worried about, tends to be happening 
in the corner part of the diagram that is so small that 
you can’t see clearly what is going on!

A proportionality approach

What follows is certainly no more rigorous than any 
of the above, but is perhaps easier for students to 
swallow.

Let 𝑆, as before, be the geometric series with first 
term 𝑎 ≠ 0 and common ratio |𝑟| < 1:

𝑆 = 𝑎 +  𝑎 𝑟 + 𝑎 𝑟2 +  𝑎 𝑟3 +  ⋯.

It is clear that 𝑆 must be proportional to 𝑎 , since 
every term in the series is proportional to 𝑎 . (If 𝑎  
suddenly becomes 10 times as big, then 𝑆 will also 
become 10 times as big.)

So, we can write

𝑆 = 𝑘𝑎 , 

where 𝑘 is a constant of proportionality depending 
only on 𝑟.

Removing the first term, 𝑎 , from this series leaves 
another geometric series, with the same common 
ratio 𝑟, and with first term 𝑎 𝑟, instead of 𝑎 : 

𝑆 − 𝑎 = 𝑎 𝑟 + 𝑎 𝑟2 +  𝑎 𝑟3 +  ⋯

Note that here we are just subtracting one term, 𝑎 , 
not, as before, an entire series.

Now, looking at this new geometric series on the 
right-hand side, by the same argument as before, 
this series must be proportional to 𝑎 𝑟, with the 
same constant of proportionality, 𝑘:

𝑆 − 𝑎 = 𝑘𝑎 𝑟.
So,

𝑘𝑎 − 𝑎  = 𝑘𝑎 𝑟.
Since 𝑎 ≠ 0,

𝑘 − 1 = 𝑘𝑟
𝑘 (1 − 𝑟) = 1

𝑘 = 1
1 − 𝑟.

So,
𝑆 = 𝑎 

1 − 𝑟, 

the standard formula.

I appreciate that this approach suffers from its 
own sleight of hand, where we subtly assume that 
infinite sums can be scalar multiplied. But overall I 
think avoiding the telescoping of the infinite series 
can be helpful. Subtracting a single constant term, 
𝑎 , from an infinite series is much less of a potential 
difficulty than trying to find the difference between 
two infinite sums.

Note
1.  Here, the ‘...’ sections have a quite different 

meaning. We are no longer saying ‘and so on 
like this forever’. Now, we are merely omitting 
a finite number of terms that we just can’t be 
bothered to write out. For any particular 𝑛, 
we could in principle write them all out, so 
the ellipsis here is just a convenience, rather 
than a necessity. We can say exactly what each 
of the terms hidden in the ellipsis actually is.
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Introduction

We shall consider several problems related to 
expressing positive integers as sums of positive 
integers of certain types, including squares and 
triangular numbers. The concepts involved are 
elementary and most of the problems could form 
the basis of investigations in the classroom.   

1s and 2s

We start with the following little puzzle.

In how many ways can the number 12 be expressed as 
a sum of 1s and 2s ?

For example, we can write 12 as

2 + 2 + 2 + 2 + 2 + 2
2 + 1 + 2 + 1 + 2 + 1 + 2 +1
2 + 2 + 2 + 2 + 1 + 1 + 1 + 1.

Although the last two sums contain the same 
ingredients, namely four 1s and four 2s, they are 
to be regarded as different. In other words, order 
matters.

A natural response to the question might be “Quite 
a few” but, although 12 is not a large number per se, 
it is large enough in the present context to make the 
answer far from obvious immediately.

In such a situation it is a good idea to look at smaller 
numbers first to try to detect what is going on.  
Starting from 1, we obtain the following sums.

1 = 1
2 = 1 + 1;  2

3 = 1 + 1 + 1;  2 + 1; 1 + 2
4 = 1 + 1 + 1 +1;  2 + 1 + 1;  1 + 2 + 1;  1 + 1 + 2;  
 2 + 2.

In total we have 1, 2, 3 and 5 sums respectively. 
At this stage, students might make the conjecture 
that we are dealing with Fibonacci numbers and 
checking what happens for 5 and 6 seems to confirm 
this. They could then be challenged to try to prove 
this conjecture.

The proof is relatively simple and elegant. To get a 
sum of 1s and 2s for a positive integer n, we note 
that such a sum ends with either a 1 or a 2 and 
therefore we 

either 
 add a 1 to one of the sums for the integer n-1
or

 add a 2 to one of the sums for the integer n-2.

If we denote by f(n) the number of ways of writing n 
as a sum of 1s and 2s we therefore have

f(n) = f(n-1) + f(n-2);  f(1) =1; f(2) = 2.

We recognise the recurrence relation for the 
familiar Fibonacci sequence (albeit with a single 1 
at the start rather than the usual two 1s). It is now 
straightforward to work out that the answer to our 
puzzle is f(12) = 233, quite a few indeed.

Fibonacci Numbers have been around for over 800 
years and it might be thought that everything that 
could be said about them has been said. Yet they 
keep turning up in all sorts of contexts. For example, 
try working out the number of ways of paving a  
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