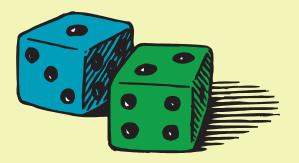
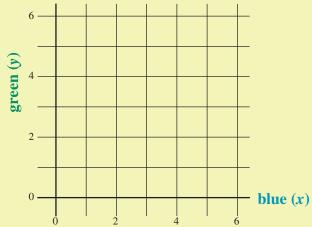
STRAIGHT DICE



I have two ordinary unbiased dice, one blue and one green. I throw them together and plot the point with coordinates (blue, green) on Cartesian (x, y) axes.



If I throw the dice three times, what is the probability that my points will make a straight line?

Answer

The simplest way to get a straight line is to get the same point twice together with a different point. Then we will effectively have only two distinct points, which is bound to make a straight line. The number of ways in which this can happen is ${}^{36}C_2 = 630$. (It is highly unlikely that we will get the same point *three* times – the probability of that happening is $\frac{1}{36^2} = \frac{1}{1296}$ – but if we do, we *won't* count that as making a straight line.)

If we get three distinct points then the only way they can make a straight line is if the gradient is $\pm \infty$ (vertical), $0, \pm \frac{1}{2}$, ± 1 or ± 2 . The number of ways in which each of these can arise is given in the table below.

gradient of line	number of possible triples leading to that line
±∞	$6 \times {}^{6}C_{3} = 120$
0	$6 \times {}^{6}C_{3} = 120$
$\frac{1}{2}$	8
$-\frac{1}{2}$	8
1	$2({}^{3}C_{3} + {}^{4}C_{3} + {}^{5}C_{3}) + {}^{6}C_{3} = 50$
-1	$2({}^{3}C_{3} + {}^{4}C_{3} + {}^{5}C_{3}) + {}^{6}C_{3} = 50$
2	8

This gives us a total of **372** possible lines.

There are $36^3 = 46\,656$ possible outcomes altogether, so the probability of getting a straight line is

$$\frac{630 + 372}{46\,656} = \frac{167}{7776}$$
, which is 2.1%, correct to 1 decimal place.

Is a probability of about 1 in 50 close to what you would have expected?

Colin Foster King Henry VIII School, Coventry