
ADDING SURDS
Colin Foster looks at the different ways in which surds can be combined – 

some of which can be difficult for students to make sense of...

[ M A T H S  P R O B L E M ]

In this lesson, students 
contrast multiplication 
and addition of surds 
to understand how 
they are different  
but related.

THE DIFFICULTY
Look at these statements. Are they 
true or false? Why?

  √12 + √3 = √15    √12 – √3 = √9
  √12 × √3 = √36    √12 ÷ √3 = √4
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Students may need calculators to be sure. 
Three of the right-hand sides are square roots 
of perfect squares, so students may recognise 
these integers (√36 = 6, √9 = 3, √4 = 2). The 
multiplication and the division are correct, but 
the addition and the subtraction aren’t.
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THE SOLUTION
How can we be sure whether these are true or false?

We can show that √12 × √3 must equal √36, because squaring 
each of these expressions gives us the same value:

( √12 √3 )( √12 √3 ) = √36 √36

( √12 √12 )( √3 √3 ) = √36 √36

            12 × 3 = 36

After squaring, the left-hand side equals the right-hand side, 
meaning that √12 × √3 = √36.

If we try this with the addition, we get a problem:

         √12 + √3 = √15

          ( √12 + √3 )2 = √15 √15

              ( √12 )2 + 2√12√3 + ( √3 )2 = √15√15

                               12 + 2√12√3 + 3 = 15

So, we can see not only that these are not equal but 
that the left-hand side in a case like this is always 
going to be bigger (because of the extra 2√12√3 

term, which must be positive).

So, √12 + √3 > √12 + 3, not √12 + √3 = √12 + 3.

Square rooting is sub-additive, which means 
that, unless either a or b is zero, √a + b < √a + 
√b. The radical symbol √   does not behave 
like multiplication (e.g., something  

like 3(a + b) = 3a + 3b).  
Square rooting is not  

distributive over addition, 
like multiplication is. 

However, we can simplify √12 + √3, by using what we have 
seen about multiplication of surds. The number 12 has a 
square factor (4), and so we can write √12 = √4√3, and, 
because 4 is a square number, √12 is equal to 2√3. 

So, √12 + √3 = 2√3 + √3 = 3√3.

(This last step is just ‘counting in √3s’ and is analogous to 
collecting like terms.)

Students should check this on their calculator.

We can simplify additions and subtractions of surds in this 
kind of way whenever there is a square number that is a 
factor of the number being square rooted.

What would √12 − √3 be equal to?

This time, √12 − √3 = 2√3 − √3 = √3. It may look strange to 
write √12 − √3 = √3 (students may think it should be √6 − √3 = 
√3), but it is correct.

Checking for understanding  
To assess students’ understanding, ask them to find as many 
surd expressions as they can that are equal to 3√5. For example, 
they could start with 4√5 − √5 and convert this to √80 − √5. 
There are many possibilities, and generating lots of these is an 
excellent way to practise using these ideas. They could try to 
make the 3√5 as concealed as possible and to make some that 
look as though they might be equal to 3√5 but aren’t!

?

?

?

?

?

?

?

13


