areand volume scale factors

When comparing similar shapes, students are often confused about linear, area and volume scale factors

In this lesson, students explore what happens to the area of a disc when the disc is enlarged.

THE DIFFICULTY

Imagine that you ring up and order a 20 -inch pizza to be delivered. When they arrive, they say they are sorry, they don't have any 20-inch pizzas, but they have brought you two 10-inch pizzas instead. Is that OK?

Students may worry about things like the amount of crust, the shape of the slices, or how the pizzas would be shared out, but not realise that in fact two 10-inch pizzas contain only half as much pizza as one 20-inch pizza!

THE SOLUTION

Rather than explaining the point, just display the image below, without any words, and ask: What does this have to do with the pizza question?

If the diameter of the blue disc is 20 inches, then the diameters of the red discs will be 10 inches. The total area of the two red discs is clearly much less than the area of the blue disc.

Since the area of a disc is πr^{2}, where r is the radius, Area $\propto r^{2}$, or, since radius \propto diameter, d, Area $\propto d^{2}$. This means that twice as big a diameter gives a disc with four times as much area. The two red discs in total cover only half of the area of the blue disc! Another way to think about it is to imagine stretching one of the red discs until it is twice as wide, but without changing its height.

[^0]
[^0]: Colin Foster (@colinfoster77) is a Reader in Mathematics Education in the Department of Mathematics Education at Loughborough University. He has written many books and articles for mathematics teachers. foster77.co.uk, blog.foster77.co.uk

