EXPANDING PAIRS OF BRACKETS

Students are often confused about how to expand pairs of brackets in algebra, says **Colin Foster**

In this lesson, students connect expanding single brackets to expanding double brackets

THE DIFFICULTY

Which of the following is the odd one out and why?

3x + 6 3(x + 6) 3x + 18

Students might give different answers. For example, 3(x + 6) could be the odd one out because it contains brackets. Alternatively, 3x + 18 could be the odd one out because it contains a double-digit number (or doesn't contain a 6).

Why could 3x + 6 be the odd one out?

It's because this expression isn't equal to the other two expressions (which are equal to each other).

3(x+6) = 3x + 18 by expanding the brackets 3x + 18 = 3(x+6) by factorising.

THE SOLUTION

How would you explain **why** 3(x + 6) **must** be equal to 3x + 18?

It's important to realise that this means the two expressions are equal for **every possible value** of x.

Suppose that x = 10. What will each of the three expressions be equal to?

Encourage students to see that $3 \times (10 + 6) = 3 \times 10 + 18$ without working out the numbers; otherwise, it may seem like a fluke that 3×16 happens to be equal to 30 + 18.

3×(

One way to see this is by 'stacking' the (10 + 6)s:

10 + 6) = 10 + 6	6
+ 10 +	6
+ 10 +	6
$= \overline{30 + }$	18

Write this out in the same way for:

(a) $4 \times (10+6)$; (b) $5 \times (10+3)$; (c) $4 \times (5+2)$; (d) $5 \times (7-2)$; (e) $4 \times (a+b)$; (f) $4 \times (a+3b)$; (g) 3(5a-2b+6c).

In (\mathbf{g}) there will be three columns in the stack.

Now we extend this to a **pair** of brackets:

We know that:

$3 \times (10 + 6) =$	10 + 6	and	$4 \times (10 + 6) =$	10 + 6
	+10+6	anu		+ 10 + 6
	+10+6			+10+6
	$=\overline{30+18}$			+ 10 + 6
				$=\overline{40+24}$

So, how can we write $3 \times (10 + 6) + 4 \times (10 + 6)$?

There are two ways to calculate it:

- 1. Since 30 + 40 = 70 and 18 + 24 = 42, the answer must be 70 + 42.
- 2. But it must **also** be $7 \times (10 + 6)$.

So, we see that $(3 + 4) \times (10 + 6) = 3 \times (10 + 6) + 4 \times (10 + 6)$. "Three lots of 'ten plus six' plus four lots of 'ten plus six' is equal to 'three plus four' lots of 'ten plus six."

This is just like 7a = 3a + 4a.

So $(3+4) \times (10+6) = 3 \times (10+6) + 4 \times (10+6)$ = $3 \times 10 + 3 \times 6 + 4 \times 10 + 4 \times 6$

Write out, in the same way:

(a) $(3+5) \times (10+6)$; (b) $(3+4) \times (10+3)$; (c) $(10+3) \times (3+4)$; (d) $(3+10) \times (3+4)$; (e) $(5+4) \times (5-3)$; (f) $(5+4) \times (5-4)$; (g) (3+a)(b+c); (h) (a+2b)(c-d).

Checking for understanding

Make up two examples of a pair of brackets expansion; one easy and one hard for each. Include the correct expanded forms.

Colin Foster (@colinfoster77) is a Reader in Mathematics Education in the Department of Mathematics Education at Loughborough University. He has written many books and articles for mathematics teachers. foster77.co.uk, blog.foster77.co.uk