Students are often confused about how to expand pairs of brackets in algebra, says Colin Foster

In this lesson, students connect expanding single brackets to expanding double brackets

THE DIFFICULTY

Which of the following is the odd one out and why?

$$
3 x+6 \quad 3(x+6) \quad 3 x+18
$$

Students might give different answers. For example, $3(x+6)$ could be the odd one out because it contains brackets. Alternatively, $3 x+18$ could be the odd one out because it contains a double-digit number (or doesn't contain a 6).

Why could $3 x+6$ be the odd one out?

It's because this expression isn't equal to the other two expressions (which are equal to each other).
$3(x+6)=3 x+18$ by expanding the brackets
$3 x+18=3(x+6)$ by factorising.

THE SOLUTION

How would you explain why $3(x+6)$ must be equal to $3 x+18 ?$

It's important to realise that this means the two expressions are equal for every possible value of x.
$+10+6$
$+10+6$
$=\underline{30+18}$

Write this out in the same way for:
(a) $4 \times(10+6)$; (b) $5 \times(10+3)$; (c) $4 \times(5+2)$;
(d) $5 \times(7-2)$; (e) $4 \times(a+b)$; (f) $4 \times(a+3 b)$;
(g) $3(5 a-2 b+6 c)$.

In (g) there will be three columns in the stack.

Now we extend this to a pair of brackets:
We know that:

$$
\begin{aligned}
& \begin{aligned}
& 3 \times(10+6)= 10+6 \\
&+10+6
\end{aligned} \text { and } \quad 4 \times(10+6)=\begin{array}{r}
10+6 \\
+10+6
\end{array} \\
& +\frac{10+6}{30+18}+10+6 \\
& =\overline{30+18} \quad \begin{array}{ll}
& =\underline{10+6} \\
& =40+24
\end{array}
\end{aligned}
$$

So, how can we write $3 \times(10+6)+4 \times(10+6) ?$

There are two ways to calculate it:

1. Since $30+40=70$ and $18+24=42$, the answer must be $70+42$.
2. But it must also be $7 \times(10+6)$.

So, we see that $(3+4) \times(10+6)=3 \times(10+6)+4 \times(10+6)$. "Three lots of 'ten plus six' plus four lots of 'ten plus six' is equal to 'three plus four' lots of 'ten plus six'."

This is just like $7 a=3 a+4 a$.

$$
\text { So } \begin{aligned}
(3+4) \times(10+6) & =3 \times(10+6)+4 \times(10+6) \\
& =3 \times 10+3 \times 6+4 \times 10+4 \times 6
\end{aligned}
$$

Write out, in the same way:
(a) $(3+5) \times(10+6)$; (b) $(3+4) \times(10+3)$;
(c) $(10+3) \times(3+4)$; $(\mathbf{d})(3+10) \times(3+4)$;
(e) $(5+4) \times(5-3)$; $(\mathbf{f})(5+4) \times(5-4)$;
(g) $(3+a)(b+c)$; (h) $(a+2 b)(c-d)$.

Checking for understanding

Make up two examples of a pair of brackets expansion; one easy and one hard for each. Include the correct expanded forms.

[^0]
[^0]: Colin Foster (@colinfoster77) is a Reader in Mathematics Education in the Department of Mathematics Education at Loughborough University. He has written many books and articles for mathematics teachers. foster77.co.uk, blog.foster77.co.uk

