[M ATHS PROBLEM]
 RECURRING DECIMALS

Students are often confused about recurring decimals and their relationships to fractions

In this lesson, students compare terminating and recurring decimals and the fractions equivalent to them

THE DIFFICULTY

Look at these quantities. Do any of them have the same value? Put them in order of size, from smallest to largest.
$\begin{array}{lllllllll}\frac{1}{3} & 0.33 & \frac{3}{10} & \frac{33}{99} & \frac{0.3}{1} & 0.3 & \frac{3}{9} & 0 . \dot{3} & \frac{33}{100}\end{array}$
Students may think that $\frac{1}{3}$ and 0.3 or 0.33 are the same, but although this is approximately true it is not exactly true.

There are actually three different numbers in this list, and the correct order is:
$\frac{3}{10}=\frac{0.3}{1}=0.3<\frac{33}{100}=0.33<\frac{1}{3}=\frac{3}{9}=\frac{33}{99}=0 . \dot{3}$
Students might notice that 0.3 and 0.33 are terminating decimals, and 0.3 is recurring, but all three numbers are rational, because each can be expressed as a fraction containing only integers. This contrasts with numbers such as $\sqrt{3}$ or 4π, which are irrational, and can't be expressed as fractions of integers.

[^0]
[^0]: Colin Foster (@colinfoster77) is a Reader in Mathematics Education in the Department of Mathematics Education at Loughborough University. He has written many books and articles for mathematics teachers. foster77.co.uk, blog.foster77.co.uk

