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Students need to understand the 
reasons behind the formulae for the 
area of different quadrilaterals,  
says Colin Foster

TRAPEZIA ACTS
WHY  

TEACH THIS? 
Understanding area is critical 

to doing geometry

KEY  
CURRICULUM LINKS

+ derive and apply formulae to 
calculate and solve problems 

involving area of trapezia

Lesson plan: MATHS KS3
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In this lesson, students will explore ways of calculating 
the areas of different quadrilaterals, beginning with 
parallelograms as the key shape, leading to triangles 
(as half a parallelogram) and squares and rectangles (as 
special parallelograms). Finally, they will look at trapezia, 
which, like parallelograms, can also be thought of as formed 
from two triangles, but in this case the triangles are not 
congruent. The aim of the lesson is to give students a sound 
feeling for area, as opposed to simply memorising formulae.

STARTER ACTIVITY
Q Can you describe these two tables?

These drawings are available at teachwire.
net/ks3trapezia to display on the board or 
hand out on paper.

This is known as the Shepard's table 
illusion. Students will probably think that 
the table on the left is short and fat, 
whereas the table on the right is long 
and thin. However, on the page, the two 
parallelograms are exactly the same shape 
and size. This is a trick of perspective – 
students might find this hard to believe 
and may need you to verify it by dragging 
one on top of the other!

How can we find 
the area of different 
quadrilaterals?Q

teachwire.net/
ks3propquads

DOWNLOAD
a FREE Powerpoint for KS3 

maths on properties of 
quadrilaterals, at
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DISCUSSION
Q What different trapezia  
did you think of? Did anyone 
think of a parallelogram or a 
rectangle or a square? Did 
anyone use an isosceles 
trapezium? Or a right-angled 
trapezium? How do you  
know that the areas of your 
trapezia are all definitely  
24 cm2?

The intention is 
that the insights 
from this lesson mean that 
students will be thinking 
more about why the areas 
are what they are, in terms 
of shearing and composition 
from triangles, rather than 
mindlessly substituting 
numbers into formulae.
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Q  We can’t always trust our eyes to tell us how big a 
shape is. But we can reason whether two shapes are the 
same area or not. Are these two shapes the same area or 
different areas? Why? 

GOING DEEPER
Confident students could 

derive a method for 
finding the area of a kite.

MAIN ACTIVITY
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Give students squared or 
square-dotty paper and 
ask them to think about 
this in pairs. If they think 
that the shapes are the 
same area, can they draw 
some more with the same 
area as these? If they 
think the two shapes have 
different areas, they 
should decide which is 
bigger and by how much. 
(These are the same 
parallelograms as used in 
the table illusion, so they 
do have the same area.)

Students may reason 
that the areas are the 
same because the right-
hand shape is a 90° 
rotation of the left-hand 
shape, and rotation 
preserves area. Or they 
might imagine shearing 
the parallelograms into  
5 × 3 rectangles, since 
shearing preserves area. If 
students doubt this, a 
drawing like this might 
convince them:

If students see how a 
parallelogram can always 
be sheared into a 
rectangle, then it should be 
clear that its area is the 

ADDITIONAL 
RESOURCES

Keen students could 
look at bit.ly/3041de3 to 
find out more about the 
Shepard’s table illusion.

Teachers might be 
interested in the 
article: Foster, C. 

(2004). Trapezium artist: 
Some thoughts on the 

formula for the area of a 
trapezium. Mathematics in 

School, 33(5), 6–7, which  
is available free at  
bit.ly/2Y6cvwm.
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same as the area of the 
rectangle it gets sheared 
into. This helps with 
seeing the base and the 
height (not the side length) 
of the original 
parallelogram that need to 
be multiplied:

Once parallelograms are 
understood, rectangles and 
squares are sorted 
(because they are both 
special cases of rectangles) 
and triangles are also easy, 
because every triangle is 
half of a parallelogram:

So, if the area of a 
parallelogram (including 
rectangles and squares)  
is bh then the area of a 
triangle must be ½bh.

This leaves trapezia, 
which, like parallelograms, 
are also made up of two 
triangles, but in this case 
the two triangles are not 
necessarily congruent. (If 
they are, the trapezium is 
a parallelogram.)

If you think of a general 
(non-isosceles trapezium) 
in this way, then it is  
clear that the area is the 
sum of the areas of the  
two triangles:

I find that this approach 
is much easier for 
students than dissection 
proofs where pieces have 
to be cut off and 
rearranged to make 
rectangles or 
parallelograms.

Q  On squared paper, 
draw 10 different 
trapezia that all have an 
area of exactly 24 cm2.

This is a good challenge, 
especially if students see 
parallelograms, 
rectangles and squares 
(but not triangles!) all as 
special cases of trapezia, 
and therefore legitimate 
responses to this task.

These drawings are available at teachwire.net/ks3trapezia to 
display on the board or hand out on paper.


