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USING COHERENT REPRESENTATIONS OF 
NUMBER IN THE SCHOOL MATHEMATICS 
CURRICULUM 

COLIN FOSTER

Commercial school mathematics curricula are typically 
assembled in a piecemeal fashion, with responsibility for 
different content areas or ages distributed among a loose 
team of authors. These authors, like teachers planning their 
lessons, are likely to ask themselves the narrow question, 
‘What is the best way to teach this bit of content?’ And this 
may reduce to ‘What is the quickest/easiest way to achieve 
these particular learning objectives?’ While this approach 
may deliver good or even excellent individual lesson 
sequences, it would seem unlikely to lead to an overall 
coherent curriculum, by which I mean one in which the 
mathematical ideas connect for the student into an intelligi-
ble mathematical story (in the sense of Dietiker, 2013). In 
particular, using a wide variety of different models and rep-
resentations in an opportunistic, pragmatic fashion, 
according to the whims of the designers, and based on how 
well they might seem to fit each particular content area, 
seems to risk surrendering representational coherence across 
the curriculum. 

Different representations of number, such as number lines, 
bar models, rectangular area models, circular ‘pizza’ models 
for fractions, and so on, all have the potential to offer students 
different perspectives, and all of these perspectives are likely 
to have value. However, ‘the more the better’ would seem to 
be a problematic heuristic, and introducing multiple repre-
sentations in a haphazard fashion seems unlikely to be 
optimal (Ainsworth, 2006). In our current curriculum design 
work here at Loughborough University, directed towards 
developing a complete, free, fully-resourced set of curricu-
lum materials (Foster, Francome, Hewitt & Shore, 2021), we 
have established a deliberate design principle to seek coher-
ence in our use of representations. Our current thinking is that 
we intend to work towards this by prioritising a single repre-
sentation of number–the number line–and exploring how 
far we can proceed building a deep knowledge of number 
through that one representation. This may seem a curious and 
perhaps questionable decision, and in this article I set out the 
rationale for our approach and give examples of how we are 
seeking to put this into practice in our ongoing design work. 

 
Multiple representations and models of  
number 
It can be helpful to distinguish ‘representations’ from ‘mod-
els’ (see, e.g., Duval, 2008). We might regard the number 
line as a representation of number, because points on the line 

(or vectors from the origin to a point) can be used to visu-
alise different numbers. But, the same number line 
representation can support multiple models of number oper-
ations. For example, a calculation such as 10 — 8 could be 
modelled on the number line using vectors starting at zero 
(i.e., by adding the two vectors +10 and —8) or, alternatively, 
as ‘difference’, by identifying the points corresponding to 10 
and 8 and discerning that they are 2 apart. These would be 
different models of subtraction that use the same number 
line representation. This distinction would be difficult to 
maintain through this article, however, because ‘bar  
models’, for instance, despite their name, would be repre-
sentations, rather than models. So here, although I focus 
throughout on representations, sometimes it is more natural 
to use the word ‘model’. 

Some mathematical representations, such as the number 
line and Cartesian graphs, are part of the content that students 
must be taught, and these are non-negotiable within a given, 
prescribed curriculum. In contrast, other representations are 
purely didactic, and are used pragmatically by teachers, as 
and when appropriate, and do not constitute an end in them-
selves. They might be employed by some teachers and not by 
others, or with some students and not with others, or for a 
limited period of time, before students ‘move on’ from them. 
Common examples would include the circular ‘pizza’ model 
for fractions, bar models and double number lines. Not every 
professional mathematician, especially if educated in a differ-
ent country, would necessarily know or have encountered all 
of these representations–they are optional, and so their 
didactical use needs to be argued for on a case-by-case basis, 
in terms of costs and benefits. 

Rau (2017) coined the term representation dilemma to 
refer to the problem that for students to be able to make use 
of a representation in order to learn some mathematics they 
need a certain level of familiarity with that representation. 
This suggests that the benefits of any new representation that 
is introduced must be weighed against the costs. All represen-
tations have the potential to contribute to students’ 
understanding, but, for this to be effective, students will need 
to commit time and cognitive space to gaining familiarity, 
and some degree of fluency, with that representation. Every 
new representation brings an opportunity cost: the time and 
energy could instead be spent on deepening knowledge of a 
previously-encountered representation (Rau & Matthews, 
2017). 
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This argument has led us to consider whether some repre-
sentations of number may have higher utility than others, and 
indeed whether some (or perhaps many) commonly-used 
representations in mathematics might profitably be dispensed 
with. For example, it has been remarked that students can do 
many more useful things with a rectangular area model than 
they can with a circular ‘pizza’ model (McCourt, 2009). 
While both the circular model and the rectangular model can 
easily represent a single fraction, such as 2⁄3, a rectangle can 
be cut in perpendicular directions to show a product, such as 
1⁄5 × 2⁄3 = 2⁄15 (Figure 1a), whereas this is challenging to  
represent in an illuminating way using a circular model  
(Figure 1b). Areas are hard to calculate or estimate if students 
divide circles into non-sectors (e.g., Figure 2), and the rela-
tive areas of bars are generally easier to apprehend than those 
of sectors (Figure 3). 

Consequently, might it be productive to reduce the total 
number of different representations of number presented to 
students, in order to focus their attention on higher-leverage 
representations? Dispensing with circular models of frac-
tions, for instance, would allow more time for a deeper focus 
on other models. In addition, higher-leverage representations, 
such as the number line, may also be more likely to be 
‘canonical’ representations of number, that are part of the pre-

scribed curriculum, and so need to be taught anyway. If so, 
then focusing on their use, rather than being an additional 
cost, can be construed as an opportunity to consolidate and 
embed previously-learned content. 

Enthusiasm for visual representations to support relational 
understanding and sensemaking in mathematics is well 
founded, and these may be particularly beneficial for students 
who are disadvantaged by traditional approaches to teaching 
mathematics (Gates, 2018). However, a generally positive 
view of diagrams may lead designers to be less cautious than 
perhaps we should be about allowing a proliferation of differ-
ent representations, particularly when some may, on closer 
examination, embody problematic features. 

 
1-dimensional and 2-dimensional representations 
of number 
There are many ways to characterise different representa-
tions of number, such as iconic/symbolic, discrete/ 
continuous and concrete/abstract. Here, I distinguish  
1-dimensional and 2-dimensional representations of number. 
By 1-dimensional, so-called ‘linear’ models, I mean princi-
pally number lines, but I include in this category any 
representation that has just one variable or dimension, even 
if it is not drawn in a straight line. So, a circular number line, 
like an analogue clock or a dial on a speedometer, is still  
1-dimensional, as is a spiral number line. The circular 
‘pizza’ model for fractions, discussed above, is essentially  
1-dimensional, even though its sectors occupy 2-dimen-
sional space, because it allows only one variable to be 
represented (i.e., angle, arc length or sector area). It is iso-
morphic to a finite 0-to-1 number line that has been bent 
around into a circle. A discrete number track, such as the 
winding squares on a snakes-and-ladders board, is also uni-
dimensional. Movement is possible on such a board only in 
either a forwards or a backwards direction (ignoring the 
snakes and ladders themselves). 

All of these models are ‘linear’, even though they of 
course have to take up 2-dimensional space in order to be vis-
ible, because their second dimension is redundant and 
arbitrary. For example, a ‘bar model’ is linear, since the 
dimension perpendicular to the direction of the bar can be 
any convenient length, and does not correspond to any rele-
vant mathematical feature or ‘represent’ anything (Figure 4). 
In contrast, truly 2-dimensional representations of number, 
usually called ‘area models’, can represent the same number 
by differently-shaped but equal areas. For example, 6 could 
be a 1 × 6 rectangle or a 2 × 3 rectangle (Figure 5). 

However, there is a problematic feature of these 2-dimen-
sional representations of number. In 1-dimensional models, 
all of the relevant numbers are represented by 1-dimensional 
line segments and distances, but with 2-dimensional models it 
is not the case that all of the relevant numbers are represented 
by 2-dimensional areas. In order to show, for example, the 
product 2 × 3 = 6, we have to consider 2 and 3 to be repre-
sented by the 1-dimensional side lengths of the rectangle 
(Figure 6a). This distinction is particularly salient in a calcu-
lation such as 1 × 6 = 6 (Figure 6b), where one of the 6s is a 
1-dimensional length, whereas the other is a 2-dimensional 
area, and yet they represent the same number 6. In every case, 
2-dimensional models inevitably become mixed-dimensional. 
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Figure 1. Demonstrating 1⁄5 × 2⁄3 = 2⁄15 using (a) a rectan-
gular area model and (b) a circular model.

(a) (b)

Figure 2. Parallel lines dividing into thirds (a) the area; (b) 
the vertical diameter.

(a) (b)

Figure 3. The same values displayed as (a) a pie chart; (b) 
a bar chart.

(a) (b)
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To illustrate some of the problems of mixed dimensional-
ity, consider the multiplication of fractions. It may have been 
noted, back in Figure 1, that the relative linear dimensions  
of 1⁄3 and 1⁄5 were treated as the same, so the inequality  
1⁄3 > 1⁄5 was not apparent from comparison of the lengths in 
that figure. We have to say “2⁄3 of the vertical height, multi-
plied by 1⁄5 of the horizontal length, is equal to 2⁄15 of the 
total area”. Each fraction in the calculation is a fraction of a 
different unit. This could be addressed by replacing the 
oblong with a unit square (as in Figure 7), so that the 2⁄3 and 
the 1⁄5 are both fractions of the same length. However, even 
if this is done, the product, 2⁄15, is still a fraction of something 
else, and is of a very different character. The 2⁄15 intuitively 
appears to be considerably larger than either of the numbers 
2⁄3 or 1⁄5 which were multiplied together, since the 2⁄15 area 
takes up considerably more space on the page than either of 
the line segments for 2⁄3 or 1⁄5. It seems likely that this 
unavoidable feature of the model could contribute to stu-
dents’ difficulty in seeing that 2⁄15 < 2⁄3 and 2⁄15 < 1⁄5. We still 
have to say “2⁄3 of one thing, multiplied by 1⁄5 of the same 
thing, is equal to 2⁄15 of something else”. 

These potential confusions persist as the quantities multi-
plied become increasingly abstract, for example with 

‘algebra tiles’, as embodied in diagrams (or physical or  
virtual manipulatives) like those shown in Figure 8. The area 
model is based on a correspondence between area and  
number, and so it is perfectly reasonable for the same number 
6 to be represented both by a 2 × 3 rectangle (Figure 8a) and 
a 1 × 6 rectangle (Figure 8b), since either rectangle could be 
broken up and fitted completely into the space occupied by 
the other (Figure 9a). However, it does not seem reasonable in 
Figure 8b to have the same number 6 represented both by the 
(1-dimensional) line segment shown in bold at the top right 
and by the 2-dimensional area at the bottom (Figure 9b). 

This mixed-dimensional feature of area models of number 
is problematic, because a rectangle and a line segment are not 
just different things (like two different rectangles)–they are 
different kinds of things. It may be didactically sensible to 
represent a number sometimes by a 1-dimensional length and 
other times by a 2-dimensional area–and perhaps sometimes 
also by other things–but to do both of these, simultaneously, 
in the same diagram, seems potentially highly confusing. It is 
important to note that this is not an occasional difficulty with 
2-dimensional representations of number, in certain awkward 
cases–it happens every time. It would seem that one of the 
most basic requirements of a good representation should be 
that the same thing (e.g., the number 6) should be represented 
by the same thing (e.g., either a line segment of length 6 or a 
rectangle of area 6, but not both at the same time). 

Students might not often be heard objecting to this prob-
lem, or even perhaps be aware of it. However, it seems likely 
that having such a contradiction fundamentally built into the 
model may act as a barrier to sense making. As students 
progress with algebra, for example, they will encounter situ-
ations in which an expression like 3x + 6 in Figure 8a, which 
is represented as ‘area + area’, needs to be further multiplied 
by some other expression. In Figure 8b, for this expression to 
be multiplied by x + 1, within this 2D model, students have to 
shift the quantity down a dimension, and reconceive of 3x + 6 
as ‘length + length’, so that they can then multiply it by 
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Figure 4. Two 1D bar model representations of 6.

Figure 5. Different 2D representations of the number 6.

Figure 6. The mixed-dimensional feature of area models: 
(a) 2 × 3 = 6; (b) 1 × 6 = 6 .

Figure 7. A unit-square model for fraction multiplication.

Figure 8. Algebra tiles representing (a) 3(x + 2) ≡ 3x + 6 
and (b) (3x + 6)(x + 1) ≡ 3x2 + 9x + 6.

(a) (b)

Figure 9. (a) a reasonable equality; (b) an unreasonable 
equality.

(a)

(b)

(a) (b)
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another ‘length’ (the x + 1), so as to obtain a quadratic expres-
sion, which is now represented as an area. This seems a 
potentially seriously problematic feature of the rectangular 
area model. 

 
Prioritising the number line 
My concerns set out above about a proliferation of multiple 
contrasting representations of number, together with more 
specific concerns about the limitations of particular models, 
such as the circular ‘pizza’ model, and the built-in potential 
contradictions of a rectangular area model, have led my col-
leagues and me to seek to prioritise the number line as the 
overarching representation of number within our curriculum 
design. Freudenthal (1999) called number lines a “device 
beyond praise” (p. 101), and in many countries number lines 
are familiar objects throughout primary and secondary edu-
cation. Saxe, Diakow and Gearhart (2013) designed lesson 
sequences for teaching fractions that used the number line as 
the principal representational context, and Sidney, Thomp-
son and Rivera (2019) found that number lines were better 
than area models for learning fraction division. 

However, when moving to multiplication and division, 
rectangular area models usually predominate, and, for the 
reasons given above, we wish to avoid this transition, and 
remain true to number lines throughout. Below, I will set out 
how number lines could remain as the primary representation 
of number, even as students move to multiplicative/propor-
tional reasoning. We think that the development of a number 
line into a pair of mutually perpendicular number lines, com-
prising Cartesian axes, offers a potentially more coherent 
approach to thinking about multiplication that avoids the 
dimensional problems I have outlined with area models. 
Although perpendicular Cartesian axes define points in the 
plane, rather than on a line, this can still be viewed as a  
1-dimensional representation of number, since, as I will 
show, in every case, a number is always and only represented 
as a length of a line segment, and never as an area. So, the 
Cartesian representation does not suffer from the mixed-
dimensional problems outlined above. 

All perpetually-useful models of multiplication need to be 
able to take students beyond ‘repeated addition’ to a continu-
ous ‘stretch’ understanding (see, e.g., Lunney Borden, 
Throop-Robinson, Carter & Prosper, 2021). The rectangular 
area model does this by allowing a continuous length to rep-
resent both the multiplier and the multiplicand, and allowing 
either or both of these to be non-integer. However, it does this 
at the cost of making the product 2-dimensional, leading to 
the problems I have discussed above. We can avoid this diffi-
culty with 1-dimensional number lines, and the most obvious 
approach might be to use parallel, double-number lines, 
aligned at zero (Figure 10). These can either have the same 
scale (in which case mapping arrows can be useful, Figure 
10a) or different scales (Figure 10b). 

It could be a natural progression for students to move from 
a single number line to a pair of parallel number lines. How-
ever, since Cartesian graphs need to be learned anyway, we 
think that using perpendicular number lines may make this a 
more efficient step (Figure 11). The central challenge with 
working multiplicatively is to contrast multiplicative and 
additive thinking. Double number lines may not necessarily 
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Figure 10. Double number lines representing multiplication 
by 3 with (a) the same scale; (b) different scales.

(a)

(b)

Figure 11. Cartesian graphs representing multiplication by 
3: (a) discrete (integer); (b) continuous (real).

(a)

(b)
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do this as effectively, since there is limited structural disin-
centive for students to visualise incorrect, additive results, 
rather than the correct, multiplicative result. For example, 
consider the ‘ratio’ question below: 

To make a drink, 5 litres of soda is mixed with 4 litres 
of orange juice. 

To make a drink that tastes the same, how many litres 
of soda must be mixed with 6 litres of orange juice? 

In the double number line shown in Figure 12a, students 
experience little structural impediment to writing the  
incorrect answer 5 + 2 = 7 litres, which comes from  
additive thinking, compared with writing the correct answer, 
5 × 6⁄4 = 7.5 litres. The structure of the double number lines 
fails to offer much of a barrier to this crucial error. However, 
in Figure 12b, with the Cartesian graph (even, arguably, if 
hand-drawn and imprecise), students may be more likely to 
appreciate that a line through the origin would have to bend 
to accommodate the incorrect value (the dashed curve in  
Figure 12b). The anchoring of the line through the origin  
(0, 0) in the Cartesian representation could have greater 
potential to support the need for a multiplicative response. 

 
Possible objections to this approach  
I now consider three possible objections to this proposed 
approach. 

1. Prioritising any one representation over others is bad  

Lee and Lee (2022) expressed well the view that: 

Because each type of model has its own affordances 
and constraints, heavy reliance on only one is problem-
atic as it does not support students’ construction of 

strong and flexible understanding of fraction concepts 
but is rather likely to restrict students’ thinking. (p. 6) 

Over-stressing one representation is considered to be detri-
mental, whereas converting between different models builds 
connections, since no single representation could ever be  
sufficient to embody all aspects of a mathematical concept–
any representation would leave out something important 
(Duval, 2008). On this account, all representations have 
something to offer. For example, even the circular model for 
fractions, criticised above, has some benefits over other mod-
els, such as the way in which it is possible, when presented 
with a single sector, to recover ‘the whole circle’. This cannot 
be done from a rectangular piece taken out of a larger unit 
square, since any m × n rectangle could be viewed as a frac-
tion of any square that has sides equal to a multiple of the 
least common multiple of m and n. Related to this is the view 
that privileging one form of representation is inherently 
inequitable, because different students will learn in different 
ways and so benefit from different representations. 

These would seem to be valid concerns, but the represen-
tation dilemma (Rau, 2017) forces us to weigh up the 
advantages of multiple representations against the conse-
quent reduction in time and attention given to any individual 
one. It is possible that multiple representations, rather than 
supporting and reinforcing one another, as intended, could 
result in an overall less powerful picture for the student than 
might be obtained with one carefully-chosen representation 
used repeatedly and consistently. The choice between ‘more 
is more’ and ‘less is more’ does not seem easy to resolve by 
argument, and empirical research is needed to discover the 
benefits and drawbacks of each approach. 

2. Cartesian graphs are too abstract or difficult 

Seeking curricular coherence means consciously moving 
away from necessarily prioritising the quickest, easiest, 
short-term solution to teaching each individual piece of  
content. This means being prepared to do more difficult 
things, if they seem to have the potential to lead to greater 
coherence in the long run. The intention is that the invest-
ment of time and energy in an intensive focus on one 
primary representation (the number line), rather than multi-
ple representations, provides the time for constantly 
revisiting it, and viewing it in different ways, and this could 
help students to build a deeper understanding. Cartesian 
graphs must be taught anyway in upper primary and lower 
secondary school, so nothing additional is being proposed, 
only a deeper focus on this at the expense of alternatives. 

It is also important to note that using ‘Cartesian graphs’ does 
not necessarily imply the premature use of algebraic letters. 
Cartesian graphs can be used initially purely numerically, with 
a focus on structure, before any symbolic algebra is brought in. 
To this end, a teacher might choose at the start to avoid the lan-
guage of ‘x-axis’ and ‘y-axis’, and even ‘gradient’ or ‘slope’. 
The fundamental idea is of a position in 2-dimensional space 
being referenced by two values, one horizontal and one verti-
cal, and this is readily experienced by students in classroom 
‘people math’ scenarios, in which one student is given the task 
of tracking the position of two other students who walk back 
and forth along a pair of perpendicular lines. 
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Figure 12. Incorrect (additive) solutions using (a) a double 
number line, and (b) a Cartesian graph.

(a)

(b)
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The key idea behind all of the proposed multiplicative 
work is the linear y = mx proportionality relationship: straight 
lines through the origin, with gradient m. We see y = mx as 
fundamental to how we wish to (re)present multiplication 
(e.g., multiplication of fractions, ratio, proportionality, speed, 
trigonometry, and so on). 

3. Gradient is a ‘rate’, and so is a different kind of  
quantity from the x and y values  

The concern here is that our model suffers from the same 
problem as the rectangular area model, just in a different way. 
In the rectangular area model, we had two linear quantities 
and one area. Here, we apparently have two linear quantities, 
x and y, and one ‘rate’ (i.e., the gradient, m, of the line  
y = mx). However, it is straightforward to interpret m as a lin-
ear quantity simply by drawing a vertical line to the graph at 
x = 1, and this interpretation of m is perhaps simplest to work 
with, at least initially. For example, to introduce multiplica-
tion of fractions we might begin with multiplying a fraction 
by an integer, such as 3, therefore using the y = 3x graph, and 
zooming in to non-integer values on the x-axis. If students are 
comfortable that, say, 3 × 5 = 15, then, in order to keep all of 
the points on the y = 3x line, they need to accept that, for 
example, 3 × 1⁄5 = 3⁄5 and 3 × 2⁄5 = 6⁄5. All of this can be 
observed just by zooming in on the graph and requiring that 
non-integer points lie on the same straight line through the 
origin that represents multiplication by 3. 

Then, by exploring how y = mx looks for different integer 
m–i.e., by moving the anchoring point (1, m) up and down 
vertically, perhaps in dynamic geometry software–it 
becomes natural to accept that the non-integer m values will 
produce lines intermediate in slope between the neighbouring 
integer-gradient lines. So, for example, with y = 1⁄5x,  
it becomes apparent that 1⁄5 × 3 is also equal to 3⁄5, just as  
3 × 1⁄5 was 3⁄5 on the y = 3x graph. Following this, we can 
see, again by zooming in, that 1⁄5 × 2⁄3 = 2⁄15 (Figure 13). 
Notice here that all three numbers appear as horizontal or 
vertical lengths (shown as the three bold line segments in 
Figure 13). 

A further advantage over the rectangular area model is that 
the issue of commutativity is not fudged, as it can be with the 
rectangular area model (i.e., ‘just rotate the rectangle by 
90°’). Here, instead, we have to consider 1⁄5 × 2⁄3 by using the 
y = 1⁄5x graph and 2⁄3 × 1⁄5 by using y = 2⁄3x graph, and do 
some work to appreciate why the answers are equal. 

We would adopt a similar approach to defining trigono-
metric ‘ratios’ via the unit circle, as lengths, rather than ratios 
(Hewitt, 2007), which allows angles greater than 90° to be 

included from the outset. We also think this approach corre-
sponds more readily to the advanced notion of the 
trigonometric functions as functions of real numbers, rather 
than as functions of ‘angles’ (Foster, 2021). 

 
Conclusion 
A natural reaction might be to say that the approach pro-
posed here seems harder than an area model approach. I do 
not think this is necessarily the case, but, either way, I con-
strue the didactic design challenge not as trying to find the 
quickest, easiest way to address each narrow skill but to 
engage in the long-term investment of building the most 
powerfully useful and coherent models. Number lines and 
Cartesian graphs have enormous utility, and, if we con-
stantly use them as our primary model, students will 
experience repeated engagements with these across (superfi-
cially) diverse content areas, which should be synergistic 
and mutually reinforcing. I see this as the essence of  
what might be meant by a ‘coherent mathematics curricu-
lum’. The single idea of y = mx–straight lines through the 
origin–captures much of the structure of secondary mathe-
matics, and we revisit it again and again across different 
content areas. 

Naturally, we do not seek to avoid ‘area’ as a mathematical 
concept. We would draw a 2 by 3 rectangle and say that its 
area is 6, and calculate this by multiplication. But we would 
expect students to think of the 6 as a different kind of object 
from the 2 and the 3. In elementary mathematics, an area of 
6 is quite different from a length of 6, and our approach to 
teaching area would seek to make the dimensions of quanti-
ties highly salient, by stressing the distinction between units 
such as cm and cm2. This contrasts with the rectangular area 
model for multiplication, which, we think, tends to obscure 
this distinction. 

In order to emphasise proportion, we would retain a focus 
on y = mx longer than is typical in curricula with which we 
are familiar, meaning that we might avoid introducing an 
additive constant (a ‘+ c’, to make y = mx + c) until perhaps 
Grade 8. At that point, rather than contrasting ‘proportional’ 
with ‘non-proportional’ situations, we might instead stress 
the idea that when you have a non-zero c in y = mx + c it 
merely means that you have chosen the ‘wrong’ origin or 
baseline. So, rather than saying that in y = mx + c we have y 
not proportional to x, we might instead look for what is pro-
portional. In this case, by transforming to y — c = mx, we can 
say that the transformed quantity y — c is proportional to x. 
This is perhaps a more fruitful way to proceed. Likewise, in 
other mathematical situations in early secondary school 
mathematics in which there is non-proportionality, we might 
seek proportion; for example, the area of a circle is not pro-
portional to its radius, but we can say that the area of a circle 
is proportional to the square of its radius. Similarly, inverse 
proportionality means ‘proportional to the reciprocal’, rather 
than lack of proportionality. This seems to be an approach 
that could better highlight mathematical structure through 
recognising multiplicative relationships as being at the heart 
of lower secondary mathematics. In every multiplicative sit-
uation, we are always looking for some way to draw a 
straight line through the origin.
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Figure 13. Using Cartesian graphs to see that 1⁄5 × 2⁄3 = 
2⁄15.
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Note 
[1] Manipulatives, like Cuisenaire rods or cubes, do not fit this classifica-
tion, because students can perform ‘linear’ or ‘non-linear’ actions with 
them. For example, Cuisenaire rods might be used in a 1-dimensional line 
to represent numbers, or they might be used to make flat rectangles with an 
area of, say, 12. So their dimensionality depends on how they are used. 
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