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Although the importance of mathematical problem solving is now widely recognised,
relatively little attention has been given to the conceptualisation of mathematical
processes such as representing, analysing, interpreting and communicating. The
construct of Mathematical Knowledge for Teaching (Hill, Ball & Schilling, 2008) is
generally interpreted in terms of mathematical content, and in this paper we describe
our initial attempts to broaden MKT to include mathematical process knowledge
(MPK) and pedagogical process knowledge (PPK). We draw on data from a
problem-solving-focused lesson-study project to highlight and exemplify aspects of the
teachers’ PPK and the implications of this for our developing conceptualisation of the
mathematical knowledge needed for teaching problem solving.

INTRODUCTION AND BACKGROUND

There is currently much interest in attempts to describe and measure the kinds of
teacher knowledge that underpin the teaching of school mathematics (Rowland,
Huckstep & Thwaites, 2005; Hill, Ball & Schilling, 2008). Central to this in the work
of Ball and colleagues is the construct of Mathematical Knowledge for Teaching
(MKT), which is formulated in terms of mathematical content knowledge (MCK) and
pedagogical content knowledge (PCK). There is also a growing awareness of the
importance of problem solving in the learning of mathematics (NCTM, 2000) and the
need to emphasise mathematical processes such as representing, analysing,
interpreting and communicating. Our attention is, therefore, drawn to how frameworks
such as those for MKT ostensibly omit to describe and analyse mathematical process
knowledge. Even in studies of student knowledge, such as PISA (OECD, 2003), where
there is a focus on applications, the mathematical processes often remain implicit
rather than explicit.

For instance, we might ask what it looks like for a student to make progress in
mathematical communication in a problem-solving context and what pedagogical
knowledge would assist a teacher in supporting learners to improve in this. Answers to
such questions are necessary to inform the basis of mathematical knowledge for
teaching problem solving. A robust conceptualisation of mathematical process
knowledge (MPK) and pedagogical process knowledge (PPK) would assist in
supporting mathematics teachers to improve their skills in teaching mathematical
problem solving.

MKT is an empirically-derived classification, based on observations of actual
teaching. Hence, given our observations that there is a general paucity of teaching of
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mathematical problem solving, it is perhaps not surprising that PPK is
underemphasised in classroom activity. In this paper, we describe our first steps in
interpreting MKT more broadly to include the teaching of mathematical processes as
an important part of mathematical activity. We report on a UK lesson-study project
involving nine secondary schools (age 11-18) focused on improving the teaching of
problem solving in mathematics lessons (Wake, Foster & Swan, 2013). We describe
how teachers’ knowledge of processes and students, of processes and teaching, and of
processes and the curriculum can be facilitated by a carefully designed lesson-study
programme.

MATHEMATICAL KNOWLEDGE FOR TEACHING

Shulman (1987) precipitated considerable work in the area of knowledge for teaching
with his claim that such knowledge is distinct from the content being taught. He
outlined seven categories of knowledge for teaching, including pedagogical content
knowledge (PCK), which he defined as:

the blending of content and pedagogy into an understanding of how particular topics,
problems, or issues are organized, represented, and adapted to the diverse interests and
abilities of learners, and presented for instruction. (p. 8)

More recently, Ball and colleagues (Hill, Ball & Schilling, 2008) have developed their
construct of mathematical knowledge for teaching (MKT), which divides initially into
subject matter knowledge and PCK, and then further within these two categories. Other
conceptualisations of mathematical pedagogical knowledge, such as the ‘Knowledge
Quartet’, due to Rowland, Huckstep and Thwaites (2005), are also framed
predominantly around mathematical concepts. Ball and colleagues present their
categorisation of MKT as a domain map, and it is fruitful to consider how this diagram
looks if we simply replace every occurrence of the word ‘content’ with the words
‘concepts and processes’ (Fig. 1). We do not suggest that process and content are
dichotomous; on the contrary, we take the view that concepts and processes together
constitute the content. We believe, however, that mathematical processes have been
relatively neglected, and we seek through our modification of Ball and colleagues’
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Figure 1: MKT domain map rewritten with ‘concepts and processes’ instead of
‘content’ (adapted from Hill, Ball & Schilling, 2008)
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diagram to place them more prominently within the consciousness of the mathematics
education community.

In order to exemplify and illustrate PPK, we turn now to our case study and our
observations of teachers who were participating in a research and development project
in which teaching processes was an essential focus.

CASE STUDY

At the time of writing, we have worked for just over a year with 3-4 teachers at each of
nine schools, using a lesson-study model of teacher professional development with a
strong focus on mathematical problem solving. Here, a mathematical problem is
defined as a task for which a solution method is not known in advance by the solver
(NCTM, 2000). A consequence of this definition is that a particular learner’s
mathematical background is as important as the task itself in determining whether they
will experience that task on a particular occasion as ‘problematic’. For example, a
problem that might be categorised by one learner as a routine exercise in simultaneous
linear equations might constitute a mathematical problem for another learner who fails
to make that connection or who has no concept of simultaneous linear equations on
which to draw.

We adopted a case-study methodology in order to obtain rich, contextual data, which
consists of video recordings of the planning meetings, research lessons and post-lesson
discussions and audio recordings of interviews with the teachers.

Focusing the lesson-study groups on problem solving added a complexity beyond the
‘iconic’ Japanese model of lesson study as practised and developed since the
nineteenth century (Fernandez & Yoshida, 2004). The participation and support of
Japanese colleagues from the IMPULS project at Tokyo Gakugei University
(www.impuls-tgu.org/en/) was critical in bringing their extensive knowledge of the
lesson-study process, as well as their interest in learning more about problem solving.
On three occasions during the year, experienced Japanese colleagues assisted us in
enacting a more authentically Japanese model of lesson study than would have been
otherwise possible.

Lesson study involves a community of teachers and ‘knowledgeable other(s)’
collaborating in a cyclical process that involves planning a ‘research lesson’, joint
observation of the lesson and critical reflection in a detailed post-lesson discussion.
This process may lead to the collaborative development of a revised version of the
lesson plan and progression once more around the cycle. At the beginning of our
project, revising the lesson and re-teaching as another research lesson was rare, as the
teachers were eager to try a wide variety of different tasks. However, as expertise
developed through the project, the desire grew to refine and retry the same lesson in a
subsequent research lesson. This paper reports on a problem-solving lesson which was
revised and retaught publicly once within the project, although the school also trialled
other versions of the same lesson outside the research of the project.
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The authors of this paper supported the teachers by joining in the work of the planning
team as ideas were developed, and also functioned as ‘knowledgeable others’ in
post-lesson discussions. A key element of our role was to maintain the focus on
problem solving. All of the teachers in our study were adept at planning
concept-focused lessons addressing discrete elements of mathematical content: the
challenge was to plan lessons centred on the learning of mathematical processes.

PEDAGOGICAL PROCESS KNOWLEDGE (PPK)
Planning for the first lesson

The case study reported here focuses on two research lessons that highlighted
communication as the key mathematical process. The task ‘Hot under the collar’
(Fig. 2a) was adapted from Bowland Maths resources (www.bowlandmaths.org.uk). In
its original version, the task attempts to involve all four key processes of representing,
analysing, interpreting and evaluating, and communicating and reflecting. In seeking
to focus the learning in the research lesson on just one process — communicating — and
to take account of a particular class of students, the task was adapted (Fig. 2b). The
planning team elected to introduce the familiar context of TV weather reporting, with a
more experienced weather presenter offering what was previously described as ‘the
accurate way’ and the ‘new’ weather presenter opting for the ‘easier method’. The
scaffolding of converting 20 Celsius to the Fahrenheit scale using both methods and
calculating the error was removed. The question ‘For what temperatures does Anne’s
method give an answer that is too high?’ was replaced by the more open question ‘Is
Anne’s idea suitable for all situations?’, together with a request to ‘justify your answer
and present a convincing argument effectively’. These changes were intended to place
the task in a potentially authentic context and to emphasise the communication
element.

John and Anne are discussing how they change temperatures in degrees Celsius into John is the Senior Weather person at the BBC. -
degrees Fahrenheit. BEE

Anne is the new Weather Presenter who is due to start work on Monday.

The accurate way is to:
multiply the Celsius figure by 9, During a meeting on the previous Friday, John tells Anne that to convert
then divide by 5, then add 32. from degrees Celsius to degrees Fahrenheit she should divide by 5, multiply

by 9 and then add 32.

John Anne says she is simply going to tell the viewers that you can double the
number of degrees Celsius and then add 30.

Anne
K T 1 Is Anne's idea suitable for all situations?
| have an easier method: double the Celsius figure
then add 30. That is near enough for most . -
purposes. &\ i} You must justify your answer and present a convincing argument
effectively.

1. If the temperature is 20° C, what would John make this in Fahrenheit?
How far out would Anne be?

2. For what temperatures does Anne's method give an answer that is too high?

Figure 2:  (a) Original Bowland task; (b) Task in first iteration

The original task materials included a progression grid for teachers, suggesting what
progress in each of the four processes would look like. The planning team adapted this
considerably in order to focus on the single process of communication, and organised
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the grid using the ‘point—evidence—explain’ (PEE) structure commonly used in the UK
in the teaching of English language (DfES, 2005) (Fig. 3) to assist students with
developing a reasoned argument in their writing.

Communication Communication
Point Evidence Explain Evicence Explain Pont
Their solution indicates a Their solution includes Their solution explains i{ Their solution Their solution Thei luti
\L . evidence to back up their thel evidaiice and includes evidence to explains their eir solution
conclusion i o back up their evidence and indicates a conclusion
conclusion |  assumption = e
o P )| cc assump
=] No conclusion given Showsisome woridng but No reasoning given o Sh id but it
O g contains errors Lo o] WS S0Mme ayiceTIce. i) No reasoning given No conclusion given
o «Q contains errors
8 Their solution indi Sh king clearly but a Sh d learl
eir solution indicates a Shows working clearly but it . o ows some evidence clearly " R b
So ;
(7,] conclusion contains a few errors IS fEasOnng gven w that helps draw a conclusion. Some reasoning given Their szl:;g:sni'\:r:cates 8
7, 7)) May contain a few errors
Their solution clearly indicates a | - ¢y correct working clearly Clear reasoning given Shows enough clear evidence |  Clear reasoning given and | Their solution clearly indicates
conclusion \L that helps draw a conclusion assumptions stated a conclusion
Their solution clearly indicates a Shows working clearly and Detailed and clear reasoning Shows full evidence clearly | Detailed and clear reasoning | Their solution clearly indicates
more complicated conclusion succinctly given and succinctly that allows a | given. Assumptions are stated amore complicated
conclusion to be drawn and justified conclusion

The first iteration of the lesson

The PEE progression grid was shared with students (Year 10, n = 30) at the beginning
of the first iteration lesson. Students had encountered PEE in other subject areas, so
this structure was not new to them. Pairs of students were given time after working on
the problem during the lesson to present their answers on large sheets of paper, and
were reminded to use the PEE structure to do this. At the end of the lesson, in a plenary,
students compared two pieces of work that the teacher had selected from the class. One
of these contained a table of values showing integer temperatures from 1°C to 10°C,
with John’s and Anne’s values for each, along with the difference between them. The
other piece of work showed three typical values for each of the four UK seasons and
looked at the errors for just these three temperatures. In the ensuing whole-class
discussion, the first piece of work was seen to have no explicit conclusion (‘point’) and
the second was considered to be weak in the ‘evidence’ strand.

Post-lesson discussion for the first lesson

During the post-lesson discussion, there was much debate about the advantages and
disadvantages of PEE as a way of supporting students’ development of written
mathematical communication. Several participants felt that the order might be changed
to make it more appropriate for mathematics and advocated EEP instead, believing that
having the ‘point’ at the end was more in harmony with the practice of mathematical
solutions, which tend to culminate in an ‘answer’. (There was no consensus on a
preferred ordering of ‘evidence’ and ‘explain’.) However, some participants felt that
arriving at the answer at the end reflected the experience of working on the problem but
did not dictate how a final solution might be presented to others, where PEE might be
clearer for a particular solution and a particular audience. Mathematics students are
frequently expected to communicate ‘what they are doing’ rather than the outcome or
conclusion of what they have done.




Foster, Wake & Swan

It was noted that some students seemed to think that the ‘evidence’ strand was about
quantity — ‘the more the better’ — and copied out many of the calculations that they had
done. There was little indication in the students’ work that they were marshalling
evidence strategically to support an argument. It was suggested in the post-lesson
discussion that effective mathematical communication is assisted by having a clear
purpose and audience in mind, so that students know who it is that they need to inform
and convince by their argument.

The second iteration of the lesson

Several changes were made to the lesson for its second iteration. The question ‘Is
Anne’s idea suitable for all situations?’ in the task was replaced by ‘How accurate is
Anne’s approximation?’ In the first case, a student could answer that it is only
‘suitable’ on one occasion (10°C, where the two Fahrenheit values obtained are
identical), whereas the second version was intended to force students to focus on
accuracy, potentially leading to very different communications, particularly in
students’ explanations.

The other big change to the lesson was to modify the PEE structure to revise the order
to evidence-explain-point (EEP). The statements of progression for evidence were also
modified so as to tighten the link between ‘evidence’ and its purpose in supporting a
conclusion, in order to attempt to combat the ‘more evidence the better’ problem seen
in the first lesson.

Post-lesson discussion for the second lesson

Participants discussed the advantages and disadvantages of a generic PEE or EEP
scheme and whether a structure perhaps needed to be adapted to the details of each
particular task. No consensus was reached on these matters, but the view was
expressed that the preferred order might depend on whether the intention is to
communicate working or conclusions.

DISCUSSION

We now briefly describe and exemplify three elements of pedagogical process
knowledge (PPK) observed during the course of this iterative lesson-study cycle.

Teachers’ knowledge of processes and students (KPS)

By analogy with Ball and colleagues’ (2008) ‘knowledge of content and students’, we
see KPS as the intertwining of knowledge of processes and common ways in which
students think about processes, what contexts motivate them to learn the processes and
what difficulties they have. We found that students frequently interpret requests for
mathematical communication as invitations to ‘show working’ — the more the better —
and fail to attend sufficiently to purpose and audience. The frequently reiterated
demands of examination technique (so-called ‘quality of written communication’) may
at times conflict with those of clear and meaningful communication of a reasoned
mathematical argument.
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Teachers’ knowledge of processes and teaching (KPT)

We see KPT as relating to knowing and being able to use effective strategies for
teaching problem-solving processes. The debate over the virtues of PEE versus EEP as
a scaffold for developing mathematical communication is a good example of the sort of
thinking that lies within this domain. We found that this aspect of MKT for problem
solving is particularly underdeveloped in the teachers with whom we have worked in
our project.

Teachers’ knowledge of processes and the curriculum (KPC)

We see KPC as knowledge that enables teachers to select and sequence suitable tasks
to facilitate a coherent development in students’ process skills. The idea of designing a
sequence of lessons to develop a single process, such as communication, represents a
certain kind of KPC, as does choosing tasks which provide suitable opportunities for
specific process learning. Moving beyond this to develop a coherent, sustained
approach to the learning of problem solving over time provides a challenge beyond the
scope of our work to date.

Watson (2008) warns that identifying types of knowledge can be unhelpful and lead to
a fragmentary sense of what is relevant. Various attempts at schematising the
mathematical problem-solving process, such as RUCSAC (read, understand, choose,
solve, answer, check) (www.tes.co.uk/ResourceDetail.aspx?storyCode=3007537), are
widely thought to detract from the authentic experience of problem solving. Does
PEE/EEP perhaps come into this category? Student mathematical actions are driven by
the task and inevitably require them to draw on concepts as well as processes following
their individual understanding of the context. Coherent mathematical activity requires
a subtle blending of engagement with mathematical content, mathematical
competencies and context (Wake, 2014). Consequently, we believe that it is important
to recognise the interdependency of content, context and processes.

CONCLUSION

In conclusion, we are not surprised that an empirical approach to the conceptualisation
of MKT has not so far identified knowledge of mathematical processes as fundamental
to everyday classroom practice. We know that problem solving is often not given the
attention it deserves in day-to-day teaching. Teachers’ understanding of process skills
and what it means to make progress in learning processes is currently significantly
underdeveloped.

Mathematical communication is widely seen as an important component of doing and
learning school mathematics (Sfard, 2007), yet the mathematical processes are
approached quite differently from processes in other subject areas. For example, the
teaching of ‘native language’ in England works to a very different epistemological
frame that prioritises how English is used in practice rather than knowledge to be
assimilated.
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In this paper, we have drawn on our findings to suggest aspects of PPK that might be
given greater attention. In subsequent work we seek to extend our characterisations and
develop the conceptualisation of MKT to emphasise further the mathematical practices
in problem solving.

Acknowledgements

The research that informed this paper was funded by the Bowland Charitable Trust
(www.bowland.org.uk). We would like to thank all of the teachers involved for their
participation and their many insights, and particularly our Japanese colleagues from
the IMPULS project at Tokyo Gakugei University (www.impuls-tgu.org/en/).

References

DfES (2005). Key Stage 3 National Strategy. Leading in Learning: Exemplification in
English. London: DfES.

Fernandez, C. & Yoshida, M. (2004). Lesson Study: A Japanese approach to improving
mathematics teaching and learning. Mahwah, NJ: Lawrence Erlbaum Associates.

Hill, H. C., Ball, D. L. & Schilling, S. G. (2008). Unpacking pedagogical content knowledge:
Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal
for Research in Mathematics Education, 39(4), 372-400.

National Council of Teachers of Mathematics (NCTM) (2000). Principles and Standards for
School Mathematics. Reston, VA: NCTM.

OECD (Organisation for Economic Co-operation and Development) (2003). The PISA 2003
Assessment Framework — Mathematics, Reading, Science and Problem Solving
Knowledge and Skills. Paris: OECD.

Rowland, T., Huckstep, P. & Thwaites, A. (2005). Elementary teachers’ mathematics subject
knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics
Teacher Education, 8(3), 255-281.

Sfard, A. (2007). Commognition: Thinking as Communicating: The case of mathematics.
Cambridge: Cambridge University Press.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard
Educational Review, 57(1), 1-23.

Wake, G. (2014). Making sense of and with mathematics: The interface between academic
mathematics and mathematics in practice, Educational Studies in Mathematics, in press.

Wake, G., Foster, C. & Swan, M. (2013). A theoretical lens on lesson study: Professional
learning across boundaries. In Lindmeier, A. M. & Heinze, A. (Eds.). Proceedings of the
37th Conference of the International Group for the Psychology of Mathematics Education,
Vol. 4, pp. 369-376. Kiel, Germany: PME.

Watson, A. (2008). Developing and deepening mathematical knowledge in teaching: Being
and knowing. In MKiT 6, Nuffield Seminar Series, 18th March, at University of
Loughborough. Accessed from www.maths-ed.org.uk/mkit/MKiT5_Watson_
distribution-version.pdf on 13 January 2014.




