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In this article, we explore the possibilities associated 
with using empty number lines for teaching the solving 
of linear equations. In our recent work designing the 
LUMEN Curriculum (www.lboro.ac.uk/services/lumen/
curriculum/, Foster et al., 2024), we have been seeking 
coherence across the different representations that we 
have used. We have adopted a ‘less is more’ approach to 
representations and models, choosing to prioritise the use 
of the number line over other representations wherever 
possible (Foster, 2022, 2023). This principle presents us 
with frequent design challenges, and here we explore the 
boundaries and limitations of the use of empty number 
lines within one important area of mathematics content 
– solving linear equations.

Balancing representations

Many different representations are commonly used with 
school students to visualise the process of solving a 
linear equation such as 3𝑥 + 7 = 19. The rationale of ‘Do 
the same operation to both sides’ is often conveniently 
displayed using the language and imagery of ‘balancing’ 
(Andrews & Sayers, 2012; Marschall & Andrews, 2015; 
Otten et al., 2019). However, reservations have been 
expressed about modern children’s lack of familiarity 
with two-pan balances (Fig. 1). Even playground seesaws 
nowadays tend to be constructed with springs (Fig. 2), 
so they no longer function in the straightforward up-and-
down fashion of a balance.

Figure 1. A traditional two-pan balance –  
a common metaphor for equation solving

Figure 2. A modern seesaw in a playground

Additionally, where solving a linear equation involves 
steps such as expanding brackets and collecting like 
terms, the metaphor of balancing can become strained, 
because although these steps maintain equality, they 
may happen on only one side of the equation. This 
leads us to question how useful a traditional balance 
model may be as a metaphor for equation solving. In 
particular, given that there is a cost associated with 
introducing every additional representation (Foster, 
2022), and our intention to adopt the number line as our 
default representation whenever possible, we wonder 
what possibilities an empty number line offers, as an 
alternative to balances, for representing the solving of 
linear equations.

Solving equations on the Empty Number Line

Consider the two layouts shown in Figures 3 and 4 that 
might be employed for solving the simple linear equation 
3𝑥 + 7 = 19. Figure 3 uses a traditional vertical layout 
and Figure 4 an unscaled, horizontal empty number line 
(Dickinson & Eade, 2004). Learners at this stage may 
bring familiarity with using empty number lines for 
numerical calculations; we would not envisage solving 
linear equations being the first time that learners met 
empty number lines.

Figure 3. Solving 3𝑥 + 7 = 19  
using a traditional vertical layout

Figure 4. Solving 3𝑥 + 7 = 19 using a horizontal empty number line.
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The similarities between the layouts in Figures 3 and 
4 are notable, with pairs of identical operations being 
applied successively to ‘both sides’ of the equation to 
reach the solution, 𝑥 = 4. In both layouts, we have used 
arrows to indicate operations, and it would be possible 
to differentiate addition/subtraction and multiplication/
division operations by using different colours or types of 
arrows. Since arrows are ubiquitous throughout school 
mathematics, such a distinction might help to avoid 
confusion between correct and incorrect simplifications, 
such as those shown in Figure 5.

Figure 5. Correct / incorrect ratio simplifications 

It might be thought that the two representations in 
Figures 3 and 4 are essentially identical, but for a 90° 
rotation. A vertical number line provides more breathing 
space for writing longer expressions horizontally and 
for completing more steps vertically ‘down the page’ 
(Fig. 6). It also supports the language of ‘left-hand side’ 
and ‘right-hand side’. We think that vertical number 
lines have considerable merit (Moeller et al., 2025), but 
for convenience in this article we will use more familiar 
horizontal number lines.

Figure 6. Solving 3𝑥 + 7 = 19 using a vertical  
empty number line provides more breathing space  

for writing longer expressions

As we have contrasted Figures 3 and 4, we have come to 
think that the differences between these two approaches 
are highly significant, with considerable implications for 
the learning of algebra, as we will explain here.

The traditional vertical layout shown in Figure 3, if 
interpreted as a solution to the equation at the top, has 
to be read or drawn from top to bottom, and Figure 4, 
employing the empty number line, has to be read from 
right to left. The vertical progression down the page in 
Figure 3 has no more significance than the progression 
of ordinary text down the page; however, the horizontal 
positions of the six expressions in Figure 4, although not 
to scale, are very significant. In this example, all is well: 
not only are the pairwise coincidences (3𝑥 + 7  with  
19, 3𝑥 with 12, and 𝑥 with 4) essential for expressing the 
three equalities, but the numbers underneath the line  
(0, 4, 12, 19) are correctly ordered, expressing the relative 
magnitudes of these quantities; i.e.,

0 < 4 < 12 < 19 and 𝑥 < 3𝑥 < 3𝑥 + 7 .

Mis-ordering on the Empty Number Line

It follows from what we have seen that where the 
necessary operations to solve the equation increase the 
value of both sides, movement to the right is needed 
(e.g. Figs. 7 and 8). In cases such as Figure 7, where 
movement is non-unidirectional, ordering problems can 
arise. For example, if, instead of solving 3𝑥 − 7 = 8, as in  
Figure 7, we were to tackle the similar-looking equation 
3𝑥 − 7 = 2, the same layout results in breaking the order 
0 < 2 < 3 < 9 (Fig. 9). (The same problem would arise in 
Figure 7 if we had chosen to make the ÷3 arrow shorter 
than the +7  arrow.) Given that empty number lines 
are typically not drawn to scale, losing order as well as 
magnitude means that the line has completely ceased 
to represent any feature of the numerical values. While 
an expert might be happy to overlook this, or even be 
oblivious to it, we feel that it is the kind of inconsistency 
that a thoughtful learner would puzzle over.

Figure 7. Movement to the right  
in the solution of 3𝑥 − 7 = 8 

https://www.amie.org.uk/


12 Mathematics in School, January 2026      AMiE website www.amie.org.uk

Figure 8. Movement to the right first in the solution of  𝑥3 − 7  = 2 

Figure 9. Non-unidirectional movement breaking the order 0 < 2 < 3 < 9 when solving 3𝑥 − 7 = 2

Adopting the empty number line approach and 
preserving ordering on the number line forces the learner 
to consider with each operation whether the value of 
both sides increases or decreases, and by how much, 
relative to the other quantities. In simple cases, such as 
+ 5 or × 3 applied to positive values, this may present 
little challenge, and the effort may be compensated for 
by the benefit of visualising the ‘changing but remaining 
equal’ nature of the values at each stage. However, in 
other cases, this could be an unwelcome distraction, 

unhelpfully increasing learners’ cognitive load and 
making calculational demands that would otherwise be 
unnecessary. In some cases it could even require knowing 
in advance the unknown value, and whether it is positive 
or negative. For example, when solving 3𝑥 − 7 = 2, to 
preserve the order of the empty number line, the learner 
needs to anticipate the solution 𝑥 = 3 before completing 
the final step, and then squeeze this value in between the 
2 and the 9 (Fig. 10).

Figure 10. Preserving ordering can be challenging when movement is non-unidirectional

We think that there could be other benefits to discussing 
the ordering of values along with movements on an 
empty number line; for example, when addressing 
misconceptions such as ‘multiplication makes things 
bigger’. Representing × 0.1, for example, as a movement 
to the left can help learners make sense of the operation 
beyond merely seeing movement of the digits one 
column to the right. We think that much of this work 
can be undertaken within ‘number’ before encountering 
algebraic manipulation.

In more subtle cases, the mis-ordering may not be 
apparent unless the learner goes back after the solution 

is obtained and checks for it. For example, in solving  
4𝑥 − 7 = 𝑥 + 8, the representation in Figure 11 may at 
first glance look innocent. However, having discovered at 
the end that 𝑥 = 5, the order of the expressions turns out 
to be 0, 5, 15, 13, 20, with 𝑥 + 8 out of order. This occurs 
because, when subtracting the 𝑥, we drew this as though 
𝑥 > 7 , but, as we may or may not realise afterwards, 
this was false. This is a frequent problem when adding 
or subtracting multiples of the unknown, and a further 
problem relates to the necessity of making an assumption 
about the sign of 𝑥, in order to decide in which direction  
a +𝑥 or −𝑥 arrow should go.
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Mathematics in School, January 2026      AMiE website www.amie.org.uk 13

Figure 11. Solving 4𝑥−7 =𝑥+8 using the empty number line

One way to avoid this issue is always to take the equations 
back to zero. In this case, we would subtract 8 and then 
subtract 𝑥, to leave 3𝑥 − 15 = 0. Adding 15 and dividing 
by 3 is now unproblematic. We can always know where 
zero is, even on an empty number line. This approach can 
forshadow work with higher-order polynomials, such as 
quadratics, where obtaining an expression equal to zero 
is the prelude to factorising and using the zero-product 
property.

Weighing advantages and disadvantages

In our design discussions, we have debated how 
important or not the mis-ordering might be in cases such 
as the one shown in Figure 11. All models have their 
limitations and break down eventually, and then need 
adapting, extending or abandoning. Have we just pushed 
this model too far? Our reservations over the traditional 
layout of Figure 3 are that it is completely symbolic and 
abstract, whereas the almost identical layout in Figure 4 
or Figure 6 seems to us to root each stage at a particular 
location on the empty number line. To what extent is 
this helpful or unhelpful for the learner? It may help the 
learner to be reminded that, at every point, each side of 
the equation is an expression that has a particular value 
– and, at each point, the values of each expression are the 
same on each side. Before solving equations, we would 
envisage learners having had many prior experiences 
starting with, for example, 𝑥 = 3, and devising other 
equalities that are consistent with this one, building up 
more and more complicated-looking equations.

But should a learner be concerned at each step of 
solving an equation about the value that both sides of 
the equation have? Does this add unnecessary cognitive 
load, or does it support sensemaking of what they are 
doing? We aspire to an eventual expert performance in 
which the learner may not think or care about whether 
the value is increasing or decreasing in each step of 
their solution, confident only in the fact that both sides 
remain equal to each other, even if they are unaware of 
what particular value they are equal to. Is this a more 
advanced perspective or a less conceptual one? Perhaps 
the empty number line might be deployed initially, in 
carefully-chosen cases in which the ordering problems 
do not arise, and then, subsequently, this scaffolding 
can be removed, and learners proceed purely abstractly, 
using a traditional layout as in Figure 3. If so, would the 

teacher ever have good reason to draw attention to the 
ordering problem or not?

The empty number line approach emphasises not only 
that the same operations are performed on both sides of 
the equation but that the ‘value of the equation’ changes 
throughout the process, while preserving the solution set 
of the unknown. The idea that the values of both sides of 
the equation are changing with each step, but in such a 
way that they always remain equal to each other, may not 
always be appreciated clearly by learners. This is perhaps 
suggested when learners include additional (incorrect) 
equals signs down the left-hand side of their solution 
(Fig. 12), appearing not to distinguish a situation such as 
Fig. 12a (incorrect) from Figure 12b (correct).

(a)

 3𝑥 + 7 = 19
= 3𝑥 = 12
=   𝑥 = 4

(b)

 3𝑥 + 7 − 19
= 3𝑥 − 12
= 3(𝑥 − 4) 

Figure 12. Equals signs on the left-hand side used  
(a) incorrectly and (b) correctly

The empty number line approach perhaps makes it 
easier for learners to talk about an equation such as  
2𝑥 = 6 being, in some sense, ‘twice’ an equation such as 
𝑥 = 3, despite the value of 𝑥 being the same in both. We 
wonder if this is useful or misleading language? We think 
that this way of talking can be convenient when learners 
progress to solving simultaneous equations and want to 
label an equation such as 𝑥 + 𝑦 = 3 as ① and a scaled-
up version, such as 2𝑥 + 2𝑦 = 6, as 2 × ①. Perhaps it 
could be worth living with some of the problems outlined 
with the empty number line approach if the benefits 
when extending to simultaneous linear equations were  
considerable enough.

Simultaneous linear equations

Since representational coherence across different topics 
is central to our design principles, it is important for 
us to consider how effective the empty number line 
representation might be in related algebra content 
beyond solving simple linear equations, such as for 
solving simultaneous linear equations. We want to avoid 
introducing multiple, bespoke representations that have 
limited domains of relevance, as we see this as contrary 
to the coherence that we wish to build into our resources.

https://www.amie.org.uk/
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The empty number line can be used to solve a pair 
of simultaneous linear equations in two unknowns 
by repeatedly finding operations that translate both 
equations (note, equations now, rather than expressions) 
to the same position. Fig. 13 shows how 𝑥 + 2𝑦 = 8 and  
2𝑥 + 3𝑦 = 13 may be solved by transforming both 

equations into 2𝑥 + 4𝑦 = 16. We multiply 𝑥 + 2𝑦 = 8 
so that the coefficient of 𝑥 matches the corresponding 
coefficient in 2𝑥 + 3𝑦 = 13. Then, 2𝑥 + 3𝑦 = 13 needs 3 
adding to the 13 and 𝑦  adding to the 2𝑥 + 3𝑦  to reach the 
same position on the number line, meaning that 𝑦 = 3. 

Figure 13. Solving the simultaneous equations 𝑥 + 2𝑦 = 8 and 2𝑥 + 3𝑦 = 13 on the empty number line

It is worth noting that now the arrows above and below 
the number line show different symbols, yet their value is 
the same. We might regard this as the same representation 
(empty number line) but a different model. This way 
of working with simultaneous linear equations might 
perhaps be less problematic for learners if they have 
previously employed the same kind of empty-number-
line approach with simple linear equations. Figure 14 
shows the solution of the same equation as in Figure 11, 
but using the empty number line differently. Here, we 
make both the left-hand side and the right-hand side of 

the equation 4𝑥 − 7 = 𝑥 + 8 into the same expression. 
This requires adding 15 to the left-hand side and 3𝑥 
to the right-hand side, and so it follows that these two 
quantities must be equal. The fact that we are still ‘doing 
the same thing to both sides’ is less transparent here, but 
we use this fact to equate 15 and 3𝑥. (To obtain 𝑥 = 5 
from 3𝑥 = 15, we could draw a new empty number line 
and solve by dividing by 3, although we envisage learners 
soon not needing this additional number line for single-
step equations.)

Figure 14. Solving the simple equation 4𝑥 − 7 = 𝑥 + 8 in a different way on the empty number line

Quadratic equations

If we now turn to the solution of quadratic equations, 
we note that solution by completing the square can 
be accomplished step by step on the empty number 
line. Figure 15 shows the solution of the equation  
𝑥2 + 4𝑥 − 5 = 0 from the point at which it is re-written 
in the form (𝑥 + 2) 2 − 9 = 0. We think that solution by 

factorisation cannot reasonably be represented on the 
empty number line, unless you branch off to two different 
number lines. Cartesian axes (i.e. two orthogonal 
number lines) seem necessary here. However, using an 
empty number line to help learners generalise that for 
𝑎𝑥 + 𝑏 = 0 we have 𝑥 = − 𝑏

𝑎 can help when finding
solutions for quadratics in factorised form.

https://www.amie.org.uk/
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Figure 15. Solving (𝑥 + 2) 2 − 9 = 0 by completing the square

Multiplication by –1

For equations in which the coefficient of the unknown is 
negative, multiplication or division by –1 may be useful, 
and is represented by rotation by a half turn about zero. 
In 1 dimension, this rotation is equivalent to a reflection 
in zero. However, we prefer to frame this as rotation, 
because we see this as more forward looking. Eventually, 
when learners meet complex numbers, they will 
encounter 𝑖 as a rotation of a quarter turn anticlockwise 

about zero. Two of these quarter rotations, successively, 
are equivalent to this half-turn rotation about zero, and 
this corresponds to 𝑖2 = −1. Although complex numbers 
may be years away in terms of learners’ journeys, we see 
no reason not to prepare the ground in this way.

It is always possible to avoid multiplication by a 
negative number. For example, Figure 16 shows solving  
7  − 3𝑥 = 4, in which the first step adds 3𝑥, rendering a 
positive coefficient of 𝑥.

Figure 16. Solving 7  − 3𝑥 = 4 by adding 3𝑥 first

Alternatively, Figures 17 and 18 show two ways in which 
division or multiplication by a negative number can be 
visualised on the empty number line. In Figure 17, we use 
multiplication by −1 to rotate −3𝑥 into +3𝑥. Whereas the 
approach in Figure 16 switched the term in the unknown 

from above to below the number line, multiplication by a 
negative number keeps the term in the unknown above 
the number line. In Figure 18, we save a step by dividing 
by −3 instead.

Figure 17. Solving 7  − 3𝑥 = 4 by multiplying by −1

https://www.amie.org.uk/
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Figure 18. Solving 7  − 3𝑥 = 4 in two steps by dividing by – 3

Simple linear inequalities

Our biggest disappointment in our adventures with 
the empty number line has been our failure to deploy 
them for solving simple linear inequalities. Learners 
are often asked to represent the solutions to inequalities 

on a number line, such as the solution set 𝑥 ≤ 4 to the 
inequality 3𝑥 + 7 ≤ 19 in the form shown in Figure 19. 
This raised our hopes that the empty number line could 
be ideal for representing the entire process of solving 
inequalities.

Figure 19. Representing the solution 𝑥 ≤ 4 to the inequality 3𝑥 + 7 ≤ 19 on the empty number line

However, this seems possible only under highly restricted 
circumstances, such as the example in Figure 20 for the 
inequality 3𝑥 + 7 ≤ 19. In situations in which there is 
an unknown on both sides (e.g. 4𝑥 − 7 ≤ 𝑥 + 8), the 
symmetry between the two instances of the unknown 
must be broken, as shown in Figure 21. Here, the 𝑥 + 8 

is treated as a ‘fixed’ value, marked at a single position 
on the number line, while the 4𝑥 − 7  is represented by 
a continuous arrow. The roles of the two sides could of 
course be reversed, but we cannot see how to represent 
both sides simultaneously as arrows.

Figure 20. Solving the inequality 3𝑥 + 7 ≤ 19 on the empty number line

Figure 21. Solving the inequality 4𝑥 − 7 ≤ 𝑥 + 8 on the empty number line

https://www.amie.org.uk/
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We also regret the possible confusion of arrows 
representing ranges of values and arrows representing 
operations being performed on both sides. This might be 
mitigated by using different arrow styles or colours. As 
we suggested earlier, it may also be easier here to reduce 
the inequality to one that has a zero on one side.

Double inequalities can be straightforward if they are of 
the form 𝑎 ≤ 𝑥 ± 𝑏 ≤ 𝑐, where 𝑎, 𝑏 and 𝑐 are constants 
(Fig. 22), but in other cases they can also be complicated 
to represent.

Figure 22. Solving the double inequality 1 ≤  𝑥 + 2 ≤ 5 on the empty number line

Conclusion

Given our ambition of trying to limit the proliferation 
of multiple contrasting representations throughout the 
mathematics curriculum (Foster, 2022), it seems to us 
productive, before selecting a representation for use in 
some content area, to explore how well or badly it might 
extend to other related areas. We have sought to explore 
that in this article for the case of the empty number line to 
see what opportunities and challenges there might be in 
applying this as the principal representation for solving 
equations (and inequalities). We have examined how the 
empty number line might be implemented for solving 
simple linear equations with the unknown on both sides, 
simultaneous linear equations, quadratic equations, 
simple linear inequalities and double inequalities.

Our tentative conclusions are that we do not think that 
the empty number line can be a desirable end-goal for 
learners’ layout of their solutions in these topics. To 
do this accurately and consistently is cumbersome and 
sometimes requires knowing the solution in advance. But 
we think that the empty number line may offer a helpful 
scaffold in the early stages of learning to solve simple 
equations, providing possibly clearer links to prior 
number concepts than the balance model seems likely to 
do. But we would envisage this scaffolding being faded 
away before learners encounter examples that possess 
many of the kinds of complexities discussed in this article.

It may also be that algebra is an important enough topic to 
justify introducing an alternative bespoke representation, 
such as Grid Algebra (Hewitt, 2016). Grid Algebra is 
based on the multiplication table grid, and can be seen as 
multiple, ‘stacked’ number lines. All representations and 
models have costs as well as benefits, and careful thought 
needs to be given to whether the benefits of introducing 
a particular model outweigh the costs and, if so, for how 
long this remains the case.
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