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When students think about area, such as the area of 
a triangle, they often go straight to a formula, such as 

. Giving students questions 

in which this formula cannot be immediately applied, 
because the lengths of the base and the height are not 
explicitly provided, may encourage them to think more 
deeply about area.

The triangle shown in Figure 1 has all of its vertices on 
lattice points. How would you work out its area?

Figure 1. A triangle with all of  
its vertices on lattice points.

Maybe you would use Pick’s Theorem? This tells us that 
the area of any simple polygon with all of its vertices on 

lattice points is equal to 
b
2 + i − 1, where b is the number 

of lattice points on the boundary and i is the number of 
interior lattice points (i.e., not on a boundary) (see [Scott, 
2006] for a proof). Here, b = 4 and i = 2, so the area must 
be 3.

Or maybe you would use Pythagoras’ Theorem to find 
the lengths of the sides and then use Heron’s formula 
to find the area from the three side lengths. From 
Pythagoras’ Theorem, the three sides are 2 2, 5 and 

17. Substituting these values into Heron’s formula,

Area = s (s − a)(s − b)(s − c),

where a, b and c are the lengths of the three sides, and s is 
the semi-perimeter gives a rather formidable expression. 
Somewhat miraculously, it does indeed simplify to 3, 
although it would be fair to say that this is not the easiest 
way to find the area!

It would even be possible to find the area by using 
the more heavy-duty machinery of trigonometry and 

formulae such as Area . Another option 

would be to calculate half of the magnitude of the cross 
product of two vectors representing two of the sides; 

e.g., 
1
2 (2

2) × (2
1) . Equivalently, we could assign 

coordinates to the three points – i.e., (x1, y1), (x2, y2) and 
(x3, y3) – and then use the formula:

Area = 1
2

x1 y1 1
x2 y2 1
x3 y3 1

.

There are clearly numerous ways to approach this 
question.

Simple approaches

It is interesting to think about these different possibilities, 
but how might you expect a lower-secondary school 
student to go about finding the area of the triangle given 
in Figure 1 (Note 1)? The most common way that we 
have seen taught for this kind of question is to enclose 
the triangle in the smallest possible rectangle that 
has its sides parallel to the grid lines, and subtract the 
surrounding right-angled triangles (Figure 2):

4 × 2 − 1
2 (1 × 2) − 1

2 (1 × 4) − 1
2 (2 × 2) = 3

Figure 2. Finding the area of the central triangle 
by enclosing it in a rectangle and subtracting three 

(coloured) right-angled triangles.

This approach perhaps assumes that the easiest areas to 
calculate are rectangles and right-angled triangles, but 
maybe this depends on how the area of polygons is built 
up. It is usual to begin with a rectangle and think about 
area by counting up rows and columns of squares that fill 
it. This leads to finding this number by multiplying two 
perpendicular lengths. Then come right-angled triangles, 
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as half of a rectangle. This might begin with isosceles 
right-angled triangles, where every part-square on the 
grid is exactly half of a square – and then progress to the 
harder case where every part-square has a partner that 
completes it into a square (shown by the colour in Figure 
3). When both the base and the height of the right-angled 
triangle are odd, this doesn’t quite work, because we 
end up with an odd number of half squares, leading to a 
leftover half square at the end (e.g., Figure 4).

Figure 3. Every part-square pairs up with  
another part-square to make a whole.

Figure 4. Here, part-squares pair up to  
make whole squares, but there is a half  

square left over at the end (shown in white).

To see non-right-angled triangles also as half of a rectangle 
usually entails dividing the triangle into two right-angled 
triangles, and seeing each of them as half of a different 
rectangle (e.g., the green and blue rectangles shown in 
Figure 5). This requires somehow seeing (or assuming) 
that the sum of the halves of two rectangles is equal to 
half of the sum of the rectangles.

Figure 5. Seeing a non-right-angled triangle  
as half of the large (green + blue) rectangle.

Shearing

An alternative approach is to bring in the idea of shearing 
early on (Foster, 2019). Shearing is a very useful area-
preserving transformation, and can be a helpful way to 
see why ‘perpendicular height’ is the relevant measure 
to consider when dealing with parallelograms and 
non-right-angled triangles. If learners can find the 
area of a rectangle, then they can find the area of any 
parallelogram, because if neither the base nor the height 
changes as we shear a parallelogram into another one, 
then the area must be constant. Pushing over a stack of 
paper or books is a classic way of seeing this (Figure 6), 
and this can be easier than the area dissection proofs 
that are more commonly used. This means that the ‘base 
× height’ formula for a rectangle is valid not just for 
rectangles but for any parallelogram (of which rectangles 
are merely a subset), so long as we interpret ‘height’ 
as ‘perpendicular height’. This seems like an important 
insight, and we think that there may be a case for meeting 
this early, before worrying about triangles. 

Figure 6. Pushing over a stack of books  
indicates that shearing preserves area.

Once students are convinced about shearing, then the 
nice thing is that every triangle is half of a parallelogram. 
Right-angled triangles are no longer a particularly special 
case – the parallelogram they are half of just happens to be 
a rectangular parallelogram, but that is not so important. 
This means that moving from parallelograms to triangles 
(and not just right-angled ones) is now quite a small step. 
The hard part, of understanding about perpendicular 
height, has already been encountered in the easier case 
of parallelograms.

The problem with triangles like the one we began with in 
Figure 1 is that ‘half the base times the height’ doesn’t seem 
to be very useful, because, even if we can use Pythagoras’ 
Theorem to find the length of whichever side we choose 
as the base, the height seems tricky to find. That problem 
tends to push us towards the enclosing rectangle method 
outlined in Figure 2. But this isn’t absolutely necessary. 
An alternative approach is to shear our triangle until it 
becomes an ‘easy’ triangle. For example, with the triangle 
shown in Figure 1, it takes only one shear to do this (see 
Figure 7). We have moved one of the vertices, parallel to 
the opposite side, so we haven’t changed the base (the 
red side in Fig. 7) or the perpendicular height (because 
we were careful to move parallel to the red side). We 
have now created a triangle with one side parallel to 
the grid, so, taking this side now as the base, the area 

is 
1
2 (3 × 2) = 3. (A GeoGebra demonstration is at www.

geogebra.org/m/yvrd3jys). 
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Figure 7. Shearing parallel to the red  
lines creates an ‘easy’ triangle.

Whether learners find this easier or not than the 
enclosing rectangle method will of course depend on how 
much shearing has been emphasised. (If this is the first 
time they meet shearing, then they will find it hard!) We 
like the shearing approach, not necessarily because it is 
‘quicker’ or ‘easier’, but because it is highly visual, and the 
transformation leads to geometrical (not just numerical/
algebraic) simplicity. Looking for opportunities to 
simplify by shearing is a powerful strategy in many 
geometrical problems. For example, students sometimes 
work on tasks in which the perimeter of a shape is kept 
constant, but the area changes (e.g., a fixed length of 
fence enclosing different areas). With shearing, students 
can explore situations where the area remains constant 
but the perimeter of a shape changes.

There are many questions that students might explore. 
For example:

1. Can the area of this triangle (Fig. 1) be found by a 
different shear from the one shown in Figure 7? How 
many shearing solutions can you find?

2. Can the area of any triangle with its vertices on 
lattice points always be found by shearing? If so, is 
one shear always sufficient?

3. Can any parallelogram with it vertices on lattice 
points always be sheared into an easier one? Can it 
always be sheared into a rectangle with sides parallel 
to the grid? How many shears does it take?

Conclusion

We are not dismissing the value of the enclosing-
rectangle method shown in Figure 1. This method really 
comes into its own with awkward-shaped polygons 
that have more than three sides or with tilted squares 
and other parallelograms. But we are moving in our 
thinking towards maybe seeing the enclosing-rectangle 
method as a method of last resort. To us, shearing seems 
more elegant and potentially a more conceptually-
oriented approach that focuses attention helpfully on the 
important concept of a ‘perpendicular height’.

Approaches to area based on shearing highlight the 
need for most geometrical situations to be visualised 
on a lattice, at least in the early stages. This avoids the 
problem of students being expected to make assumptions 
about the shapes they are presented with (e.g., that 
something that looks like a rectangle must be a rectangle, 
see Foster & Francome, 2022). When working without a 
grid, it is obvious that any non-right-angled triangle is 
always just one shear away from a right-angled triangle, 
which is a half-rectangle. When using a grid, this can be 
done in a precise, reasoned way, without assumptions 
or approximate measurement. And this does not need 
to be confined to square lattices; it works equally well 
on isometric or other shaped grids. These kinds of tasks 
reinforce the idea that area is measured in ‘shaped-
units’, most commonly squared units, but that this is an 
arbitrary choice, convenient given a square lattice.

We think that using a shear is a more elegant way of 
finding areas, especially of triangles. It helps students 
see that area is the amount of surface enclosed within a 
boundary, rather than merely an answer to a calculation. 
We think it may help learners to acquire a more coherent 
view of area, rather than seeing it as a lot of disconnected 
formulae to remember. 

Note

1. We are grateful to the Editors for pointing out that a 
horizontal line passing through the right-hand vertex 
of the triangle shown in Figure 1 divides it into two 
triangles with base 3 and height 1; hence total area 3.
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